- 936.00 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
绝密★启封并使用完毕前
2018年普通高等学校招生全国统一考试
数学(文)(北京卷)
本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)
一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合,,则
(A){0,1} (B){−1,0,1}
(C){−2,0,1,2} (D){−1,0,1,2}
(2)在复平面内,复数的共轭复数对应的点位于
(A)第一象限 (B)第二象限
(C)第三象限 (D)第四象限
(3)执行如图所示的程序框图,输出的值为
(A) (B) (C) (D)
(4)设,,,是非零实数,则“”是“,,,成等比数列”的
(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件
(5)“十二平均律”
是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f,则第八个单音频率为
(A) (B)
(C) (D)
(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为
(A)1 (B)2
(C)3 (D)4
(7)在平面坐标系中,是圆上的四段弧(如图),点在其中一段上,角以为始边,为终边,若,则所在的圆弧是
(A) (B)
(C) (D)
(8)设集合则
(A)对任意实数,
(B)对任意实数,(2,1)
(C)当且仅当时,(2,1)
(D)当且仅当 时,(2,1)
第二部分(非选择题 共110分)
二、填空题共6小题,每小题5分,共30分。
(9)设向量,,若,则_________.
(10)已知直线过点(1,0)且垂直于轴,若被抛物线截得的线段长为4,则抛物线的焦点坐标为_________.
(11)能说明“若,则”为假命题的一组,的值依次为_________.
(12)若双曲线的离心率为,则_________.
(13)若,满足,则的最小值是_________.
(14)若的面积为,且为钝角,则_________;的取值范围是_________.
三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程。
(15)(本小题13分)
设是等差数列,且.
(Ⅰ)求的通项公式;
(Ⅱ)求.
(16)(本小题13分)
已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)若在区间上的最大值为,求的最小值.
(17)(本小题13分)
电影公司随机收集了电影的有关数据,经分类整理得到下表:
电影类型
第一类
第二类
第三类
第四类
第五类
第六类
电影部数
140
50
300
200
800
510
好评率
0.4
0.2
0.15
0.25
0.2
0.1
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;学科*网
(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)
(18)(本小题14分)
如图,在四棱锥中,底面为矩形,平面平面,,,,分别为,的中点.
(Ⅰ)求证:;
(Ⅱ)求证:平面平面;
(Ⅲ)求证:平面.
(19)(本小题13分)
设函数.
(Ⅰ)若曲线在点处的切线斜率为0,求;
(Ⅱ)若在处取得极小值,求的取值范围.
(20)(本小题14分)
已知椭圆的离心率为,焦距为.斜率为的直线与椭圆有两个不同的交点,.
(Ⅰ)求椭圆的方程;
(Ⅱ)若,求 的最大值;
(Ⅲ)设,直线与椭圆的另一个交点为,直线与椭圆的另一个交点为.若,和点 共线,求.
参考答案
1.A 2.D 3.B 4.B 5.D 6.C 7.C 8.D
9. 10.
11.(答案不唯一) 12.4
13.3 14.
15.(共13分)
解:(I)设等差数列的公差为,
∵,
∴,
又,∴.
∴.
(II)由(I)知,
∵,
∴是以2为首项,2为公比的等比数列.
∴
.
∴.
16.(共13分)
【解析】(Ⅰ),
所以的最小正周期为.
(Ⅱ)由(Ⅰ)知.
因为,所以.
要使得在上的最大值为,即在上的最大值为1.
所以,即.
所以的最小值为.
17.(共13分)
(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.
第四类电影中获得好评的电影部数是200×0.25=50,
故所求概率为.
(Ⅱ)方法一:由题意知,样本中获得好评的电影部数是
140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1
=56+10+45+50+160+51
=372.
故所求概率估计为.
方法二:设“随机选取1部电影,这部电影没有获得好评”为事件B.
没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.
由古典概型概率公式得.
(Ⅲ)增加第五类电影的好评率, 减少第二类电影的好评率.
18.(共14分)
【解析】(Ⅰ)∵,且为的中点,∴.
∵底面为矩形,∴,
∴.
(Ⅱ)∵底面为矩形,∴.
∵平面平面,∴平面.
∴.又,学科.网
∵平面,∴平面平面.
(Ⅲ)如图,取中点,连接.
∵分别为和的中点,∴,且.
∵四边形为矩形,且为的中点,
∴,
∴,且,∴四边形为平行四边形,
∴.
又平面,平面,
∴平面.
19. (13分)
解:(Ⅰ)因为,
所以.
,
由题设知,即,解得.
(Ⅱ)方法一:由(Ⅰ)得.
若a>1,则当时,;
当时,.
所以在x=1处取得极小值.
若,则当时,,
所以.
所以1不是的极小值点.
综上可知,a的取值范围是.
方法二:.
(1)当a=0时,令得x=1.
随x的变化情况如下表:
x
1
+
0
−
↗
极大值
↘
∴在x=1处取得极大值,不合题意.
(2)当a>0时,令得.
①当,即a=1时,,
∴在上单调递增,
∴无极值,不合题意.
②当,即01时,随x的变化情况如下表:
x
+
0
−
0
+
↗
极大值
↘
极小值
↗
∴在x=1处取得极小值,即a>1满足题意.
(3)当a<0时,令得.
随x的变化情况如下表:
x
−
0
+
0
−
↘
极小值
↗
极大值
↘
∴在x=1处取得极大值,不合题意.
综上所述,a的取值范围为.
20.(共14分)
【解析】(Ⅰ)由题意得,所以,
又,所以,所以,
所以椭圆的标准方程为.
(Ⅱ)设直线的方程为,
由消去可得,
则,即,
设,,则,,
则,
易得当时,,故的最大值为.
(Ⅲ)设,,,,
则 ①, ②,
又,所以可设,直线的方程为,
由消去可得,
则,即,
又,代入①式可得,所以,
所以,同理可得.
故,,
因为三点共线,所以,
将点的坐标代入化简可得,即.