- 144.54 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2012年普通高等学校招生全国统一考试(江苏卷)
数学
(全卷满分160分,考试时间120分钟)
棱锥的体积,其中为底面积,为高.
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.
1.(2012年江苏省5分)已知集合,,则 ▲ .
2.(2012年江苏省5分)某学校高一、高二、高三年级的学生人数之比为,现用分层抽样的方法从该校
高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲ 名学生.
3.(2012年江苏省5分)设,(i为虚数单位),则的值为 ▲ .
4.(2012年江苏省5分)下图是一个算法流程图,则输出的k的值是 ▲ .
5.(2012年江苏省5分)函数的定义域为 ▲ .
6.(2012年江苏省5分)现有10个数,它们能构成一个以1为首项,为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 ▲ .
7.(2012年江苏省5分)如图,在长方体中,,,则四棱锥的体积为 ▲ cm3.
8.(2012年江苏省5分)在平面直角坐标系中,若双曲线的离心率为,则的值为 ▲ .
9.(2012年江苏省5分)如图,在矩形中,点为的中点,点在边上,若,则的值是 ▲ .
10.(2012年江苏省5分)设是定义在上且周期为2的函数,在区间上,
其中.若,
则的值为 ▲ .
11.(2012年江苏省5分)设为锐角,若,则的值为 ▲ .
12.(2012年江苏省5分)在平面直角坐标系中,圆的方程为,若直线
上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值是 ▲ .
13.(2012年江苏省5分)已知函数的值域为,若关于x的不等式
的解集为,则实数c的值为 ▲ .
14.(2012年江苏省5分)已知正数满足:则的取值范围是 ▲ .
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或
演算步骤.
15.(2012年江苏省14分)在中,已知.
(1)求证:;
(2)若求A的值.
16.(2012年江苏省14分)如图,在直三棱柱中,,分别是棱
上的点(点 不同于点),且为的中点.
求证:(1)平面平面;
(2)直线平面.
17.(2012年江苏省14分)如图,建立平面直角坐标系,轴在地平面上,轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程表示的曲线上,其中与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标不超过多少时,
炮弹可以击中它?请说明理由.
18.(2012年江苏省16分)若函数在处取得极大值或极小值,则称为函数的极值点。
已知是实数,1和是函数的两个极值点.
(1)求和的值;
(2)设函数的导函数,求的极值点;
(3)设,其中,求函数的零点个数.
19.(2012年江苏省16分)如图,在平面直角坐标系中,椭圆的左、右焦点分别为,.已知和都在椭圆上,其中为椭圆的离心率.
(1)求椭圆的方程;
(2)设是椭圆上位于轴上方的两点,且直线与直线平行,与交于点P.
(i)若,求直线的斜率;
(ii)求证:是定值.
20.(2012年江苏省16分)已知各项均为正数的两个数列和满足:,,
(1)设,,求证:数列是等差数列;
(2)设,,且是等比数列,求和的值.
]数学Ⅱ(附加题)
21.[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.[选修4 - 1:几何证明选讲] (2012年江苏省10分)如图,是圆的直径,为圆上位于异侧的两点,连结并延长至点,使,连结.
求证:.
B.[选修4 - 2:矩阵与变换] (2012年江苏省10分)已知矩阵的逆矩阵,求矩阵的特征值.
C.[选修4 - 4:坐标系与参数方程] (2012年江苏省10分)在极坐标中,已知圆经过点,圆心为直线与极轴的交点,求圆的极坐标方程.
D.[选修4 - 5:不等式选讲] (2012年江苏省10分)已知实数x,y满足:求证:.
【答案】证明:∵,
由题设∴。∴。
【考点】绝对值不等式的基本知识。
【解析】根据绝对值不等式的性质求证。
【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
22.(2012年江苏省10分)设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,.
(1)求概率;
(2)求的分布列,并求其数学期望.
23.(2012年江苏省10分)设集合,.记为同时满足下列条件的集合的个数:
①;②若,则;③若,则。
(1)求;
(2)求的解析式(用表示).