- 2.50 MB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2013高考数学常见难题大盘点:立体几何
1.如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点, (I)求证:AC⊥BC1; (II)求证:AC 1//平面CDB1;
解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行.
答案:解法一:(I)直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4AB=5,
∴ AC⊥BC,且BC1在平面ABC内的射影为BC,∴ AC⊥BC1;
(II)设CB1与C1B的交点为E,连结DE,∵ D是AB的中点,E是BC1的中点,
∴ DE//AC1,A
B
C
A1
B1
C1
E
x
y
z
∵ DE平面CDB1,AC1平面CDB1,
∴ AC1//平面CDB1;
解法二:∵直三棱柱ABC-A1B1C1底面三边长AC=3,BC=4,AB=5,∴AC、BC、C1C两两垂直,如图,以C为坐标原点,直线CA、CB、C1C分别为x轴、y轴、z轴,建立空间直角坐标系,则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4),D(,2,0)
(1)∵=(-3,0,0),=(0,-4,0),∴•=0,∴AC⊥BC1.
(2)设CB1与C1B的交战为E,则E(0,2,2).∵=(-,0,2),=(-3,0,4),∴,∴DE∥AC1.
点评:2.平行问题的转化:
转化
转化
面面平行线面平行线线平行;
主要依据是有关的定义及判定定理和性质定理.
2.如图所示,四棱锥P—ABCD中,ABAD,CDAD,PA底面ABCD,PA=AD=CD=2AB=2,M为PC的中点。
(1)求证:BM∥平面PAD;
(2)在侧面PAD内找一点N,使MN平面PBD;
(3)求直线PC与平面PBD所成角的正弦。
解析:本小题考查直线与平面平行,直线与平面垂直,
二面角等基础知识,考查空间想象能力和推理论证能力.
答案:(1)是的中点,取PD的中点,则
,又
四边形为平行四边形
∥,
∥ (4分)
(2)以为原点,以、、 所在直线为轴、轴、轴建立空间直角坐标系,如图,则,,,,,
在平面内设,,, 由
由
是的中点,此时 (8分)
(3)设直线与平面所成的角为
,,设为
故直线与平面所成角的正弦为 (12分)
解法二:
(1)是的中点,取PD的中点,则
,又
四边形为平行四边形
∥,
∥ (4分)
(2)由(1)知为平行四边形
,又
同理,
为矩形 ∥,,又
作故
交于,在矩形内,,
, 为的中点
当点为的中点时, (8分)
(3)由(2)知为点到平面的距离,为直线与平面所成的角,设为,
直线与平面所成的角的正弦值为
点评:(1)证明线面平行只需证明直线与平面内一条直线平行即可;(2)求斜线与平面所成的角只需在斜线上找一点作已知平面的垂线,斜线和射影所成的角,即为所求角;(3)证明线面垂直只需证此直线与平面内两条相交直线垂直变可.这些从证法中都能十分明显地体现出来
3.如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形,为的中点.
(Ⅰ)求与底面所成角的大小;
(Ⅱ)求证:平面;
(Ⅲ)求二面角的余弦值.
解析:求线面角关键是作垂线,找射影,求异面直线所成的角采用平移法 求二面角的大小也可应用面积射影法,比较好的方法是向量法
答案:(I)取DC的中点O,由ΔPDC是正三角形,有PO⊥DC.
又∵平面PDC⊥底面ABCD,∴PO⊥平面ABCD于O.
连结OA,则OA是PA在底面上的射影.∴∠PAO就是PA与底面所成角.
∵∠ADC=60°,由已知ΔPCD和ΔACD是全等的正三角形,从而求得OA=OP=.
∴∠PAO=45°.∴PA与底面ABCD可成角的大小为45°. ……6分
(II)由底面ABCD为菱形且∠ADC=60°,DC=2,DO=1,有OA⊥DC.
建立空间直角坐标系如图,则, .
由M为PB中点,∴.
∴.
∴,
.
∴PA⊥DM,PA⊥DC. ∴PA⊥平面DMC. ……4分
(III).令平面BMC的法向量,
则,从而x+z=0; ……①, ,从而. ……②
由①、②,取x=−1,则. ∴可取.
由(II)知平面CDM的法向量可取,
∴. ∴所求二面角的余弦值为-. ……6分
法二:(Ⅰ)方法同上
(Ⅱ)取的中点,连接,由(Ⅰ)知,在菱形中,由于,则,又,则,即,
又在中,中位线,,则,则四边形为,所以,在中,,则,故而,
则
(Ⅲ)由(Ⅱ)知,则为二面角的平面角,在中,易得,,
故,所求二面角的余弦值为
点评:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强 用平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角,是常用的方法.
4.如图所示:边长为2的正方形ABFC和高为2的直角梯形ADEF所在的平面互相垂直且DE=,ED//AF且∠DAF=90°。
(1)求BD和面BEF所成的角的余弦;
(2)线段EF上是否存在点P使过P、A、C三点的平面和直线DB垂直,若存在,求EP与PF的比值;若不存在,说明理由。
1,3,5
解析:1.先假设存在,再去推理,下结论: 2.运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算。
答案:(1)因为AC、AD、AB两两垂直,建立如图坐标系,
则B(2,0,0),D(0,0,2),
E(1,1,2),F(2,2,0),
则
设平面BEF的法向量
,则可取,
∴向量所成角的余弦为
。
即BD和面BEF所成的角的余弦。
(2)假设线段EF上存在点P使过P、A、C三点的平面和直线DB垂直,不妨设EP与PF的比值为m,则P点坐标为
V
A
C
D
B
则向量,向量
所以。
点评:本题考查了线线关系,线面关系及其相关计算,本题采用探索式、开放式设问方式,对学生灵活运用知识解题提出了较高要求。
5.已知正方形 、分别是、的中点,将沿折起,如图所示,记二面角的大小为
(I) 证明平面;
(II)若为正三角形,试判断点在平面内的射影是否在直线上,证明你的结论,并求角的余弦值
分析:充分发挥空间想像能力,重点抓住不变的位置和数量关系,借助模型图形得出结论,并给出证明.
解: (I)证明:EF分别为正方形ABCD得边AB、CD的中点,
EB//FD,且EB=FD,
四边形EBFD为平行四边形
BF//ED.
,平面
(II)如右图,点A在平面BCDE内的射影G在直线EF上,过点A作AG垂直于平面BCDE,垂足为G,连结GC,GD
ACD为正三角形,AC=AD.
CG=GD.
G在CD的垂直平分线上, 点A在平面BCDE内的射影G在直线EF上,
过G作GH垂直于ED于H,连结AH,则,所以为二面角A-DE-C的平面角 即.
设原正方体的边长为2a,连结AF,在折后图的AEF中,AF=,EF=2AE=2a,即AEF为直角三角形, .
在RtADE中, .
,
点评:在平面图形翻折成空间图形的这类折叠问题中,一般来说,位于同一平面内的几何元素相对位置和数量关系不变:位于两个不同平面内的元素,位置和数量关系要发生变化,翻折问题常用的添辅助线的方法是作棱的垂线。关键要抓不变的量.
6.设棱锥M-ABCD的底面是正方形,且MA=MD,MA⊥AB,如果ΔAMD的面积为1,试求能够放入这个棱锥的最大球的半径.
分析:关键是找出球心所在的三角形,求出内切圆半径.
解: ∵AB⊥AD,AB⊥MA,
∴AB⊥平面MAD,
由此,面MAD⊥面AC.
记E是AD的中点,从而ME⊥AD.
∴ME⊥平面AC,ME⊥EF.
设球O是与平面MAD、平面AC、平面MBC都相切的球.
不妨设O∈平面MEF,于是O是ΔMEF的内心.
设球O的半径为r,则r=
设AD=EF=a,∵SΔAMD=1.
∴ME=.MF=,
r=≤=-1。
当且仅当a=,即a=时,等号成立.
∴当AD=ME=时,满足条件的球最大半径为-1.
点评:涉及球与棱柱、棱锥的切接问题时一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系。注意多边形内切圆半径与面积和周长间的关系;多面体内切球半径与体积和表面积间的关系。