• 929.00 KB
  • 2021-05-14 发布

高考数学题分类专题18实际应用题

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2010年全国各地高考数学真题分章节分类汇编 第18部分:实际应用题 一、选择题:‎ ‎1.(2010年高考山东卷文科8)已知某生产厂家的年利润(单位:万元)与年产量(单位:万件)的函数关系式为,则使该生产厂家获得最大年利润的年产量为 ‎(A)13万件 (B)11万件 ‎ (C) 9万件 (D)7万件 ‎【答案】C ‎【解析】令导数,解得;令导数,解得,所以函数在区间上是增函数,在区间上是减函数,所以在处取极大值,也是最大值,故选C。 ‎ ‎【命题意图】本题考查导数在实际问题中的应用,属基础题。‎ ‎2.(2010年高考陕西卷文科10)某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为 [B]‎ ‎ (A)y=[] (B)y=[] (C)y=[] (D)y=[]‎ ‎【答案】B y ‎0‎ x ‎70‎ ‎48‎ ‎80‎ ‎70‎ ‎(15,55)‎ ‎【解析】(方法一)当除以的余数为时,由题设知,且易验证知此时,当除以的余数为时,由题设知,且易验证知此时,故综上知,必有,故选.‎ ‎3.(2010年高考四川卷文科8)某加工厂用某原料由车间加工出产品,由乙车间加工出产品.甲车间加工一箱原料需耗费工时10小时可加工出‎7千克产品,每千克产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出‎4千克产品,每千克产品获利50元.甲、乙两车间每天功能完成至多70多箱原料的加工,每天甲、乙车间耗费工时 总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为 ‎ ‎(A)甲车间加工原料10箱,乙车间加工原料60箱 ‎(B)甲车间加工原料15箱,乙车间加工原料55箱 ‎(C)甲车间加工原料18箱,乙车间加工原料50箱 ‎(D)甲车间加工原料40箱,乙车间加工原料30箱 ‎ 解析:解析:设甲车间加工原料x箱,乙车间加工原料y箱 则 目标函数z=280x+300y 结合图象可得:当x=15,y=55时z最大 本题也可以将答案逐项代入检验.‎ 答案:B ‎ 二、填空题:‎ ‎1. (2010年高考浙江卷文科16)某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少至少达7000万元,则,x 的最小值 。‎ 解析:20;本题主要考察了用一元二次不等式解决实际问题的能力,属中档题 三、解答题:‎ ‎1.(2010年高考福建卷文科21)(本小题满分12分)‎ 某港口要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口北偏西30°且与该港口相距‎20海里的处,并正以‎30海里/小时的航行速度沿正东方向匀速行驶。假设该小艇沿直线方向以海里/小时的航行速度匀速行驶,经过小时与轮船相遇。‎ ‎(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少? ‎ ‎(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值; Z(Ⅲ)是否存在,使得小艇以海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定的取值范围;若不存在,请说明理由。‎ ‎2.(2010年高考广东卷文科19)(本题满分12分)‎ 某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.‎ 如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?‎ 解:设为该儿童分别预订个单位的午餐和个单位的晚餐,设费用为F,则F,由题意知:‎ 画出可行域:‎ 变换目标函数:‎ ‎3.(2010年高考湖北卷文科19)(本小题满分12分)‎ 已知某地今年年初拥有居民住房的总面积为a(单位:m2),其中有部分旧住房需要拆除。当地有关部门决定每年以当年年初住房面积的10%建设新住房,同事也拆除面积为b(单位:m2)的旧住房。‎ ‎(Ⅰ)分别写出第一年末和第二年末的实际住房面积的表达式:‎ ‎(Ⅱ)如果第五年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b是多少?(计算时取1.15=1.6)‎ ‎4.(2010年高考湖南卷文科19)(本小题满分13分)‎ 为了考察冰川的融化状况,一支科考队在某冰川山上相距‎8Km的A、B两点各建一个考察基地,视冰川面为平面形,以过A、B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图4)。考察范围到A、B两点的距离之和不超过‎10Km的区域。‎ (I) 求考察区域边界曲线的方程:‎ (II) 如图4所示,设线段 是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动‎0.2km,以后每年移动的距离为前一年的2倍。问:经过多长时间,点A恰好在冰川边界线上?‎