- 952.50 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
图5
(2006)17、(本题14分)如图5所示,、分别世、的直径,与两圆所在的平面均垂直,.是的直径,,.
(I)求二面角的大小;
(II)求直线与所成的角.
17、解:(Ⅰ)∵AD与两圆所在的平面均垂直,
∴AD⊥AB, AD⊥AF,故∠BAD是二面角B—AD—F的平面角,
依题意可知,ABCD是正方形,所以∠BAD=450.
即二面角B—AD—F的大小为450;
(Ⅱ)以O为原点,BC、AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),则O(0,0,0),A(0,,0),B(,0,0),D(0,,8),E(0,0,8),F(0,,0)
所以,
设异面直线BD与EF所成角为,则
直线BD与EF所成的角为
(2007) 17.(本小题满分12分)
已知某几何体的俯视图是如图5所示的矩形,正视图(或称主
视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视
图)是一个底边长为6、高为4的等腰三角形.
(1)求该儿何体的体积V;
(2)求该几何体的侧面积S
【解析】画出直观图并就该图作必要的说明. …………………3分
(2)……………7分 (3)………12分
(2008) 18.(本小题满分14分)
如图5所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,∠ABD=60°,∠BDC=45°,△ADP~△BAD.
(1)求线段PD的长;
(2)若PC=R,求三棱锥P-ABC的体积.
图5
18.解:(1)因为是园的直径,所以
又△ADP~△BAD.
所以
(2)在中,
因为
所以 又
所以底面
三棱锥体积为
(2009) 17.(本小题满分13分)
某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图.
(1)请画出该安全标识墩的侧(左)视图
(2)求该安全标识墩的体积
(3)证明:直线BD平面PEG
【解析】(1)侧视图同正视图,如下图所示.
(2)该安全标识墩的体积为:
(3)如图,连结EG,HF及 BD,EG与HF相交于O,连结PO.
由正四棱锥的性质可知,平面EFGH ,
又 平面PEG
又 平面PEG;
(2010) 18.(本小题满分14分) w_w w. k#s5_u.c o*m
如图4,是半径为的半圆,为直径,点为弧AC的中点,点和点为线段的三等分点,平面外一点满足平面,=.
(1)证明:;
(2)求点到平面的距离. w_w*w.k_s_5 u.c*o*m
18.法一:(1)证明:∵点B和点C为线段AD的三等分点, ∴点B为圆的圆心
又∵E是弧AC的中点,AC为直径, ∴即
∵平面,平面, ∴
又平面,平面且 ∴平面
又∵平面, ∴
(2)解:设点B到平面的距离(即三棱锥的高)为.
∵平面, ∴FC是三棱锥F-BDE的高,且三角形FBC为直角三角形
由已知可得,又 ∴
在中,,故,
∴,
又∵平面,故三角形EFB和三角形BDE为直角三角形,
∴,在中,, ∴,
∵即,故,
即点B到平面的距离为.
法二:向量法,此处略,请同学们动手完成。
(2011)18.(本小题满分13分)
图5所示的集合体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的.A,A′,B,B′分别为,,,的中点,分别为的中点.
(1)证明:四点共面;
(2)设G为A A′中点,延长到H′,使得.证明:
18.(本小题满分13分)
证明:(1)中点,
连接BO2
直线BO2是由直线AO1平移得到
共面。
(2)将AO1延长至H使得O1H=O1A,连接
//
由平移性质得=HB
2012年18.(本小题满分13分)
如图5所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=AB,PH为△PAD边上的高。
(1) 证明:PH⊥平面ABCD;
(2) 若PH=1,AD=,FC=1,求三棱锥E-BCF的体积;
(1) 证明:EF⊥平面PAB。*
【解析】(1)证明:因为PH为△PAD边上的高,所以PH⊥AD,又因为AB⊥平面PAD,平面PAD,所以AB⊥PH,又因为PHAD=H,所以PH⊥平面ABCD;
(2)因为E是PB的中点,所以点E到平面BCF的距离等于点P到平面ABCD距离的一半,即=,又因为=,所以三棱锥E-BCF的体积为;
2013年18.(本小题满分13分)
如图4,在边长为1的等边三角形中,分别是边上的点,,是的中点,与交于点,将沿折起,得到如图5所示的三棱锥,其中.
(1) 证明://平面;
(2) 证明:平面;
(3) 当时,求三棱锥的体积.
18. 解:(1)在等边三角形中,
,在折叠后的三棱锥中也成立,
,平面,
平面,平面;
(2)在等边三角形中,是的中点,所以①,.
在三棱锥中,,②
;
(3)由(1)可知,结合(2)可得.