- 431.50 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高考数学真题汇编---数列
学校:___________姓名:___________班级:___________考号:___________
一.选择题(共9小题)
1.(2017•新课标Ⅰ)记Sn为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为( )
A.1 B.2 C.4 D.8
2.(2017•新课标Ⅱ)在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔(古称浮屠),本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出的结果是( )
A.6 B.5 C.4 D.3
3.(2017•新课标Ⅲ)等差数列{an}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{an}前6项的和为( )
A.﹣24 B.﹣3 C.3 D.8
4.(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )
A.440 B.330 C.220 D.110
5.(2016•上海)已知无穷等比数列{an}的公比为q,前n项和为Sn,且=S,下列条件中,使得2Sn<S(n∈N*)恒成立的是( )
A.a1>0,0.6<q<0.7 B.a1<0,﹣0.7<q<﹣0.6
C.a1>0,0.7<q<0.8 D.a1<0,﹣0.8<q<﹣0.7
6.(2016•新课标Ⅰ)已知等差数列{an}前9项的和为27,a10=8,则a100=( )
A.100 B.99 C.98 D.97
7.(2016•四川)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )
(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)
A.2018年 B.2019年 C.2020年 D.2021年
8.(2016•浙江)如图,点列{An}、{Bn}分别在某锐角的两边上,且|AnAn+1|=|An+1An+2|,An≠An+1,n∈N*,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1,n∈N*,(P≠Q表示点P与Q不重合)若dn=|AnBn|,Sn为△AnBnBn+1的面积,则( )
A.{Sn}是等差数列 B.{Sn2}是等差数列
C.{dn}是等差数列 D.{dn2}是等差数列
9.(2016•新课标Ⅲ)定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,ak中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有( )
A.18个 B.16个 C.14个 D.12个
二.填空题(共9小题)
10.(2017•北京)若等差数列{an}和等比数列{bn}满足a1=b1=﹣1,a4=b4=8,则= .
11.(2017•江苏)等比数列{an}的各项均为实数,其前n项和为Sn,已知S3=,S6=,则a8= .
12.(2017•新课标Ⅱ)等差数列{an}的前n项和为Sn,a3=3,S4=10,则 = .
13.(2017•新课标Ⅲ)设等比数列{an}满足a1+a2=﹣1,a1﹣a3
=﹣3,则a4= .
14.(2016•江苏)已知{an}是等差数列,Sn是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是 .
15.(2016•北京)已知{an}为等差数列,Sn为其前n项和.若a1=6,a3+a5=0,则S6= .
16.(2016•上海)无穷数列{an}由k个不同的数组成,Sn为{an}的前n项和,若对任意n∈N*,Sn∈{2,3},则k的最大值为 .
17.(2016•新课标Ⅰ)设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为 .
18.(2016•浙江)设数列{an}的前n项和为Sn,若S2=4,an+1=2Sn+1,n∈N*,则a1= ,S5= .
三.解答题(共22小题)
19.(2017•新课标Ⅱ)已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=﹣1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通项公式;
(2)若T3=21,求S3.
20.(2017•山东)已知{xn}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.
(Ⅰ)求数列{xn}的通项公式;
(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…Pn+1(xn+1,n+1)得到折线P1 P2…Pn+1,求由该折线与直线y=0,x=x1,x=xn+1所围成的区域的面积Tn.
21.(2017•山东)已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.
(1)求数列{an}通项公式;
(2){bn} 为各项非零的等差数列,其前n项和为Sn,已知S2n+1=bnbn+1,求数列的前n项和Tn.
22.(2017•天津)已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{a2nbn}的前n项和(n∈N*).
23.(2017•天津)已知{an}为等差数列,前n项和为Sn(n∈N+),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{a2nb2n﹣1}的前n项和(n∈N+).
24.(2017•新课标Ⅲ)设数列{an}满足a1+3a2+…+(2n﹣1)an=2n.
(1)求{an}的通项公式;
(2)求数列{}的前n项和.
25.(2017•新课标Ⅰ)记Sn为等比数列{an}的前n项和.已知S2=2,S3=﹣6.
(1)求{an}的通项公式;
(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列.
26.(2017•江苏)对于给定的正整数k,若数列{an}满足:an﹣k+an﹣k+1+…+an﹣1+an+1+…+an+k﹣1+an+k=2kan对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.
(1)证明:等差数列{an}是“P(3)数列”;
(2)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.
27.(2017•北京)已知等差数列{an}和等比数列{bn}满足a1=b1=1,a2+a4=10,b2b4=a5.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.
28.(2017•北京)设{an}和{bn}是两个等差数列,记cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs这s个数中最大的数.
(1)若an=n,bn=2n﹣1,求c1,c2,c3的值,并证明{cn}是等差数列;
(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得cm,cm+1,cm+2,…是等差数列.
29.(2017•浙江)已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,
(Ⅰ)0<xn+1<xn;
(Ⅱ)2xn+1﹣xn≤;
(Ⅲ)≤xn≤.
30.(2016•北京)已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.
(1)求{an}的通项公式;
(2)设cn=an+bn,求数列{cn}的前n项和.
31.(2016•北京)设数列A:a1,a2,…,aN (N≥2).如果对小于n(2≤n≤
N)的每个正整数k都有ak<an,则称n是数列A的一个“G时刻”,记G(A)是数列A的所有“G时刻”组成的集合.
(Ⅰ)对数列A:﹣2,2,﹣1,1,3,写出G(A)的所有元素;
(Ⅱ)证明:若数列A中存在an使得an>a1,则G(A)≠∅;
(Ⅲ)证明:若数列A满足an﹣an﹣1≤1(n=2,3,…,N),则G(A)的元素个数不小于aN﹣a1.
32.(2016•新课标Ⅱ)等差数列{an}中,a3+a4=4,a5+a7=6.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=[an],求数列{bn}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.
33.(2016•天津)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.
(1)求{an}的通项公式;
(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.
34.(2016•上海)对于无穷数列{an}与{bn},记A={x|x=an,n∈N*},B={x|x=bn,n∈N*},若同时满足条件:①{an},{bn}均单调递增;②A∩B=∅且A∪B=N*,则称{an}与{bn}是无穷互补数列.
(1)若an=2n﹣1,bn=4n﹣2,判断{an}与{bn}是否为无穷互补数列,并说明理由;
(2)若an=2n且{an}与{bn}是无穷互补数列,求数量{bn}的前16项的和;
(3)若{an}与{bn}是无穷互补数列,{an}为等差数列且a16=36,求{an}与{bn}的通项公式.
35.(2016•新课标Ⅲ)已知数列{an}的前n项和Sn=1+λan,其中λ≠0.
(1)证明{an}是等比数列,并求其通项公式;
(2)若S5=,求λ.
36.(2016•浙江)设数列{an}的前n项和为Sn,已知S2=4,an+1=2Sn+1,n∈N*.
(Ⅰ)求通项公式an;
(Ⅱ)求数列{|an﹣n﹣2|}的前n项和.
37.(2016•新课标Ⅱ)Sn为等差数列{an}的前n项和,且a1=1,S7
=28,记bn=[lgan],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.
(Ⅰ)求b1,b11,b101;
(Ⅱ)求数列{bn}的前1000项和.
38.(2016•四川)已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N+
(Ⅰ)若a2,a3,a2+a3成等差数列,求数列{an}的通项公式;
(Ⅱ)设双曲线x2﹣=1的离心率为en,且e2=2,求e12+e22+…+en2.
39.(2016•新课标Ⅰ)已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2=,anbn+1+bn+1=nbn.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求{bn}的前n项和.
40.(2016•江苏)记U={1,2,…,100},对数列{an}(n∈N*)和U的子集T,若T=∅,定义ST=0;若T={t1,t2,…,tk},定义ST=++…+.例如:T={1,3,66}时,ST=a1+a3+a66.现设{an}(n∈N*)是公比为3的等比数列,且当T={2,4}时,ST=30.
(1)求数列{an}的通项公式;
(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:ST<ak+1;
(3)设C⊆U,D⊆U,SC≥SD,求证:SC+SC∩D≥2SD.
41、(2016•山东)已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)令cn=,求数列{cn}的前n项和Tn.
42、(2016•新课标Ⅲ)已知各项都为正数的数列{an}满足a1=1,an2﹣(2an+1﹣1)an﹣2an+1=0.
(1)求a2,a3;
(2)求{an}的通项公式
高考数学真题汇编---数列
参考答案与试题解析
一.选择题(共9小题)
1.
【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{an}的公差.
【解答】解:∵Sn为等差数列{an}的前n项和,a4+a5=24,S6=48,
∴,
解得a1=﹣2,d=4,
∴{an}的公差为4.
故选:C.
2.
【分析】设塔顶的a1盏灯,由题意{an}是公比为2的等比数列,利用等比数列前n项和公式列出方程,能求出结果.
【解答】解:设塔顶的a1盏灯,
由题意{an}是公比为2的等比数列,
∴S7==381,
解得a1=3.
故选:D.
3.
【分析】利用等差数列通项公式、等比数列性质列出方程,求出公差,由此能求出{an}前6项的和.
【解答】解:∵等差数列{an}的首项为1,公差不为0.a2,a3,a6成等比数列,
∴,
∴(a1+2d)2=(a1+d)(a1+5d),且a1=1,d≠0,
解得d=﹣2,
∴{an}前6项的和为==﹣24.
故选:A.
4.
【分析】方法一:由数列的性质,求得数列{bn}的通项公式及前n项和,可知当N为时(n∈N+),数列{an}的前N项和为数列{bn}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;
方法二:由题意求得数列的每一项,及前n项和Sn=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别即可求得N的值.
【解答】解:设该数列为{an},设bn=+…+=2n+1﹣1,(n∈N+),则=ai,
由题意可设数列{an}的前N项和为SN,数列{bn}的前n项和为Tn,则Tn=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,
可知当N为时(n∈N+),数列{an}的前N项和为数列{bn}的前n项和,即为2n+1﹣n﹣2,
容易得到N>100时,n≥14,
A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A项符合题意.
B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.
C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210
﹣23,显然不为2的整数幂,故C项不符合题意.
D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.
故选A.
方法二:由题意可知:,,,…,
根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,
每项含有的项数为:1,2,3,…,n,
总共的项数为N=1+2+3+…+n=,
所有项数的和为Sn:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,
由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,
则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,
②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,
③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,
④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,
∴该款软件的激活码440.
故选:A.
5.
【分析】由已知推导出,由此利用排除法能求出结果.
【解答】解:∵,S==,﹣1<q<1,
2Sn<S,
∴,
若a1>0,则,故A与C不可能成立;
若a1<0,则qn,
在B中,a1<0,﹣0.7<q<﹣0.6故B成立;
在D中,a1<0,﹣0.8<q<﹣0.7,此时q2>,D不成立.
故选:B.
6.
【分析】根据已知可得a5=3,进而求出公差,可得答案.
【解答】解:∵等差数列{an}前9项的和为27,S9===9a5.
∴9a5=27,a5=3,
又∵a10=8,
∴d=1,
∴a100=a5+95d=98,
故选:C.
7.
【分析】设第n年开始超过200万元,可得130×(1+12%)n﹣2015>200,两边取对数即可得出.
【解答】解:设第n年开始超过200万元,
则130×(1+12%)n﹣2015>200,
化为:(n﹣2015)lg1.12>lg2﹣lg1.3,
n﹣2015>=3.8.
取n=2019.
因此开始超过200万元的年份是2019年.
故选:B.
8.
【分析】设锐角的顶点为O,再设|OA1|=a,|OB1|=c,|AnAn+1|=|An+1An+2|=b,|BnBn+1|=|Bn+1Bn+2|=d,由于a,c不确定,判断C,D不正确,设△AnBnBn+1的底边BnBn+1上的高为hn,运用三角形相似知识,hn+hn+2=2hn+1,由Sn=d•hn,可得Sn+Sn+2=2Sn+1,进而得到数列{Sn}为等差数列.
【解答】解:设锐角的顶点为O,|OA1|=a,|OB1|=c,
|AnAn+1|=|An+1An+2|=b,|BnBn+1|=|Bn+1Bn+2|=d,
由于a,c不确定,则{dn}不一定是等差数列,
{dn2}不一定是等差数列,
设△AnBnBn+1的底边BnBn+1上的高为hn,
由三角形的相似可得==,
==,
两式相加可得,==2,
即有hn+hn+2=2hn+1,
由Sn=d•hn,可得Sn+Sn+2=2Sn+1,
即为Sn+2﹣Sn+1=Sn+1﹣Sn,
则数列{Sn}为等差数列.
另解:可设△A1B1B2,△A2B2B3,…,AnBnBn+1为直角三角形,
且A1B1,A2B2,…,AnBn为直角边,
即有hn+hn+2=2hn+1,
由Sn=d•hn,可得Sn+Sn+2=2Sn+1,
即为Sn+2﹣Sn+1=Sn+1﹣Sn,
则数列{Sn}为等差数列.
故选:A.
9.
【分析】由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.
【解答】解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有:
0,0,0,0,1,1,1,1; 0,0,0,1,0,1,1,1; 0,0,0,1,1,0,1,1; 0,0,0,1,1,1,0,1; 0,0,1,0,0,1,1,1;
0,0,1,0,1,0,1,1; 0,0,1,0,1,1,0,1; 0,0,1,1,0,1,0,1; 0,0,1,1,0,0,1,1; 0,1,0,0,0,1,1,1;
0,1,0,0,1,0,1,1; 0,1,0,0,1,1,0,1; 0,1,0,1,0,0,1,1; 0,1,0,1,0,1,0,1.共14个.
故选:C.
二.填空题(共9小题)
10.
【分析】利用等差数列求出公差,等比数列求出公比,然后求解第二项,即可得到结果.
【解答】解:等差数列{an}和等比数列{bn}满足a1=b1=﹣1,a4=b4=8,
设等差数列的公差为d,等比数列的公比为q.
可得:8=﹣1+3d,d=3,a2=2;
8=﹣q3,解得q=﹣2,∴b2=2.
可得=1.
故答案为:1.
11.
【分析】设等比数列{an}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.
【解答】解:设等比数列{an}的公比为q≠1,
∵S3=,S6=,∴=,=,
解得a1=,q=2.
则a8==32.
故答案为:32.
12.
【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.
【解答】解:等差数列{an}的前n项和为Sn,a3=3,S4=10,S4=2(a2+a3)=10,
可得a2=2,数列的首项为1,公差为1,
Sn=,=,
则 =2[1﹣++…+]=2(1﹣)=.
故答案为:.
13.
【分析】设等比数列{an}的公比为q,由a1+a2=﹣1,a1﹣a3=﹣3,可得:a1(1+q)=﹣1,a1(1﹣q2)=﹣3,解出即可得出.
【解答】解:设等比数列{an}的公比为q,∵a1+a2=﹣1,a1﹣a3=﹣3,
∴a1(1+q)=﹣1,a1(1﹣q2)=﹣3,
解得a1=1,q=﹣2.
则a4=(﹣2)3=﹣8.
故答案为:﹣8.
14.
【分析】利用等差数列的通项公式和前n项和公式列出方程组,求出首项和公差,由此能求出a9的值.
【解答】解:∵{an}是等差数列,Sn是其前n项和,a1+a22=﹣3,S5=10,
∴,
解得a1=﹣4,d=3,
∴a9=﹣4+8×3=20.
故答案为:20.
15.
【分析】由已知条件利用等差数列的性质求出公差,由此利用等差数列的前n项和公式能求出S6.
【解答】解:∵{an}为等差数列,Sn为其前n项和.
a1=6,a3+a5=0,
∴a1+2d+a1+4d=0,
∴12+6d=0,
解得d=﹣2,
∴S6==36﹣30=6.
故答案为:6.
16.
【分析】对任意n∈N*,Sn∈{2,3},列举出n=1,2,3,4的情况,归纳可得n>4后都为0或1或﹣1,则k的最大个数为4.
【解答】解:对任意n∈N*,Sn∈{2,3},可得
当n=1时,a1=S1=2或3;
若n=2,由S2∈{2,3},可得数列的前两项为2,0;或2,1;或3,0;或3,﹣1;
若n=3,由S3∈{2,3},可得数列的前三项为2,0,0;或2,0,1;
或2,1,0;或2,1,﹣1;或3,0,0;或3,0,﹣1;或3,1,0;或3,1,﹣1;
若n=4,由S3∈{2,3},可得数列的前四项为2,0,0,0;或2,0,0,1;
或2,0,1,0;或2,0,1,﹣1;或2,1,0,0;或2,1,0,﹣1;
或2,1,﹣1,0;或2,1,﹣1,1;或3,0,0,0;或3,0,0,﹣1;
或3,0,﹣1,0;或3,0,﹣1,1;或3,﹣1,0,0;或3,﹣1,0,1;
或3,﹣1,1,0;或3,﹣1,1,﹣1;
…
即有n>4后一项都为0或1或﹣1,则k的最大个数为4,
不同的四个数均为2,0,1,﹣1,或3,0,1,﹣1.
故答案为:4.
17.
【分析】求出数列的等比与首项,化简a1a2…an,然后求解最值.
【解答】解:等比数列{an}满足a1+a3=10,a2+a4=5,
可得q(a1+a3)=5,解得q=.
a1+q2a1=10,解得a1=8.
则a1a2…an=a1n•q1+2+3+…+(n﹣1)=8n•==,
当n=3或4时,表达式取得最大值:=26=64.
故答案为:64.
18.
【分析】运用n=1时,a1=S1,代入条件,结合S2=4,解方程可得首项;再由n>1时,an+1=Sn+1﹣Sn,结合条件,计算即可得到所求和.
【解答】解:由n=1时,a1=S1,可得a2=2S1+1=2a1+1,
又S2=4,即a1+a2=4,
即有3a1+1=4,解得a1=1;
由an+1=Sn+1﹣Sn,可得
Sn+1=3Sn+1,
由S2=4,可得S3=3×4+1=13,
S4=3×13+1=40,
S5=3×40+1=121.
故答案为:1,121.
三.解答题(共22小题)
19.
【分析】(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q,运用等差数列和等比数列的通项公式,列方程解方程可得d,q,即可得到所求通项公式;
(2)运用等比数列的求和公式,解方程可得公比,再由等差数列的通项公式和求和,计算即可得到所求和.
【解答】解:(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q,
a1=﹣1,b1=1,a2+b2=2,a3+b3=5,
可得﹣1+d+q=2,﹣1+2d+q2=5,
解得d=1,q=2或d=3,q=0(舍去),
则{bn}的通项公式为bn=2n﹣1,n∈N*;
(2)b1=1,T3=21,
可得1+q+q2=21,
解得q=4或﹣5,
当q=4时,b2=4,a2=2﹣4=﹣2,
d=﹣2﹣(﹣1)=﹣1,S3=﹣1﹣2﹣3=﹣6;
当q=﹣5时,b2=﹣5,a2=2﹣(﹣5)=7,
d=7﹣(﹣1)=8,S3=﹣1+7+15=21.
20.
【分析】(I)列方程组求出首项和公比即可得出通项公式;
(II)从各点向x轴作垂线,求出梯形的面积的通项公式,利用错位相减法求和即可.
【解答】解:(I)设数列{xn}的公比为q,则q>0,
由题意得,
两式相比得:,解得q=2或q=﹣(舍),
∴x1=1,
∴xn=2n﹣1.
(II)过P1,P2,P3,…,Pn向x轴作垂线,垂足为Q1,Q2,Q3,…,Qn,
记梯形PnPn+1Qn+1Qn的面积为bn,
则bn==(2n+1)×2n﹣2,
∴Tn=3×2﹣1+5×20+7×21+…+(2n+1)×2n﹣2,①
∴2Tn=3×20+5×21+7×22+…+(2n+1)×2n﹣1,②
①﹣②得:﹣Tn=+(2+22+…+2n﹣1)﹣(2n+1)×2n﹣1
=+﹣(2n+1)×2n﹣1=﹣+(1﹣2n)×2n﹣1.
∴Tn=.
21.
【分析】(1)通过首项和公比,联立a1+a2=6、a1a2=a3,可求出a1=q=2,进而利用等比数列的通项公式可得结论;
(2)利用等差数列的性质可知S2n+1=(2n+1)bn+1,结合S2n+1=bnbn+1可知bn=2n+1,进而可知=,利用错位相减法计算即得结论.
【解答】解:(1)记正项等比数列{an}的公比为q,
因为a1+a2=6,a1a2=a3,
所以(1+q)a1=6,q=q2a1,
解得:a1=q=2,
所以an=2n;
(2)因为{bn} 为各项非零的等差数列,
所以S2n+1=(2n+1)bn+1,
又因为S2n+1=bnbn+1,
所以bn=2n+1,=,
所以Tn=3•+5•+…+(2n+1)•,
Tn=3•+5•+…+(2n﹣1)•+(2n+1)•,
两式相减得:Tn=3•+2(++…+)﹣(2n+1)•,
即Tn=3•+(+++…+)﹣(2n+1)•,
即Tn=3+1++++…+)﹣(2n+1)•=3+﹣(2n+1)•
=5﹣.
22.
【分析】(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q.通过b2+b3=12,求出q,得到.然后求出公差d,推出an=3n﹣2.
(Ⅱ)设数列{a2nbn}的前n项和为Tn,利用错位相减法,转化求解数列{a2nbn}的前n项和即可.
【解答】(Ⅰ)解:设等差数列{an}的公差为d,等比数列{bn}的公比为q.由已知b2+b3=12,得,而b1=2,所以q2+q﹣6=0.又因为q>0,解得q=2.所以,.
由b3=a4﹣2a1,可得3d﹣a1=8.
由S11=11b4,可得a1+5d=16,联立①②,解得a1=1,d=3,
由此可得an=3n﹣2.
所以,{an}的通项公式为an=3n﹣2,{bn}的通项公式为.
(Ⅱ)解:设数列{a2nbn}的前n项和为Tn,由a2n=6n﹣2,有,,
上述两式相减,得=.
得.
所以,数列{a2nbn}的前n项和为(3n﹣4)2n+2+16.
23.
【分析】(Ⅰ)设出公差与公比,利用已知条件求出公差与公比,然后求解{an}和{bn}的通项公式;
(Ⅱ)化简数列的通项公式,利用错位相减法求解数列的和即可.
【解答】解:(I)设等差数列{an}的公差为d,等比数列{bn}的公比为q.
由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q+q2﹣6=0.
又因为q>0,解得q=2.所以,bn=2n.
由b3=a4﹣2a1,可得3d﹣a1=8①.
由S11=11b4,可得a1+5d=16②,
联立①②,解得a1=1,d=3,由此可得an=3n﹣2.
所以,数列{an}的通项公式为an=3n﹣2,数列{bn}的通项公式为bn=2n.
(II)设数列{a2nb2n﹣1}的前n项和为Tn,
由a2n=6n﹣2,b2n﹣1=4n,有a2nb2n﹣1=(3n﹣1)4n,
故Tn=2×4+5×42+8×43+…+(3n﹣1)4n,
4Tn=2×42+5×43+8×44+…+(3n﹣1)4n+1,
上述两式相减,得﹣3Tn=2×4+3×42+3×43+…+3×4n﹣(3n﹣1)4n+1
==﹣(3n﹣2)4n+1﹣8
得Tn=.
所以,数列{a2nb2n﹣1}的前n项和为.
24.
【分析】(1)利用数列递推关系即可得出.
(2)==﹣.利用裂项求和方法即可得出.
【解答】解:(1)数列{an}满足a1+3a2+…+(2n﹣1)an=2n.
n≥2时,a1+3a2+…+(2n﹣3)an﹣1=2(n﹣1).
∴(2n﹣1)an=2.∴an=.
当n=1时,a1=2,上式也成立.
∴an=.
(2)==﹣.
∴数列{}的前n项和=++…+=1﹣=.
25.
【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{an}的通项公式;
(2)由(1)可知.利用等比数列前n项和公式,即可求得Sn,分别求得Sn+1,Sn+2,显然Sn+1+Sn+2=2Sn,则Sn+1,Sn,Sn+2成等差数列.
【解答】解:(1)设等比数列{an}首项为a1,公比为q,
则a3=S3﹣S2=﹣6﹣2=﹣8,则a1==,a2==,
由a1+a2=2,+=2,整理得:q2+4q+4=0,解得:q=﹣2,
则a1=﹣2,an=(﹣2)(﹣2)n﹣1=(﹣2)n,
∴{an}的通项公式an=(﹣2)n;
(2)由(1)可知:Sn===﹣[2+(﹣2)n+1],
则Sn+1=﹣[2+(﹣2)n+2],Sn+2=﹣[2+(﹣2)n+3],
由Sn+1+Sn+2=﹣[2+(﹣2)n+2]﹣[2+(﹣2)n+3],
=﹣[4+(﹣2)×(﹣2)n+1+(﹣2)2×(﹣2)n+1],
=﹣[4+2(﹣2)n+1]=2×[﹣(2+(﹣2)n+1)],
=2Sn,
即Sn+1+Sn+2=2Sn,
∴Sn+1,Sn,Sn+2成等差数列.
26.
【分析】(1)由题意可知根据等差数列的性质,an﹣3+an﹣2+an﹣1+an+1+an+2+an+3=(an﹣3+an+3)+(an﹣2+an+2)+(an﹣1+an+1)═2×3an,根据“P(k)数列”的定义,可得数列{an}是“P(3)数列”;
(2)由已知条件结合(1)中的结论,可得到{an}从第3项起为等差数列,再通过判断a2与a3的关系和a1与a2的关系,可知{an}为等差数列.
【解答】解:(1)证明:设等差数列{an}首项为a1,公差为d,则an=a1+(n﹣1)d,
则an﹣3+an﹣2+an﹣1+an+1+an+2+an+3,
=(an﹣3+an+3)+(an﹣2+an+2)+(an﹣1+an+1),
=2an+2an+2an,
=2×3an,
∴等差数列{an}是“P(3)数列”;
(2)证明:当n≥4时,因为数列{an}是P(3)数列,则an﹣3+an﹣2+an﹣1+an+1+an+2+an+3=6an,①
因为数列{an}是“P(2)数列”,所以an﹣2+an﹣1+an+1+an+2=4an,②
则an﹣1+an+an+2+an+3=4an+1,③,
②+③﹣①,得2an=4an﹣1+4an+1﹣6an,即2an=an﹣1+an+1,(n≥4),
因此n≥4从第3项起为等差数列,设公差为d,注意到a2+a3+a5+a6=4a4,
所以a2=4a4﹣a3﹣a5﹣a6=4(a3+d)﹣a3﹣(a3+2d)﹣(a3+3d)=a3﹣d,
因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,
也即前3项满足等差数列的通项公式,
所以{an}为等差数列.
27.
【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{an}的通项公式;
(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.
【解答】解:(Ⅰ)等差数列{an},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,
所以{an}的通项公式:an=1+(n﹣1)×2=2n﹣1.
(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,
等比数列{bn}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).
∴q2=3,
{b2n﹣1}是等比数列,公比为3,首项为1.
b1+b3+b5+…+b2n﹣1==.
28.
【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(bk﹣nak)﹣(b1﹣na1)≤0,则b1﹣na1≥bk﹣nak,则cn=b1﹣na1=1﹣n,cn+1﹣cn=﹣1对∀n∈N*均成立;
(2)由bi﹣ain=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得cm,cm+1,cm+2,…是等差数列;设=An+B+
对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.
【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,
当n=1时,c1=max{b1﹣a1}=max{0}=0,
当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,
当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,
下面证明:对∀n∈N*,且n≥2,都有cn=b1﹣na1,
当n∈N*,且2≤k≤n时,
则(bk﹣nak)﹣(b1﹣na1),
=[(2k﹣1)﹣nk]﹣1+n,
=(2k﹣2)﹣n(k﹣1),
=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,
则(bk﹣nak)﹣(b1﹣na1)≤0,则b1﹣na1≥bk﹣nak,
因此,对∀n∈N*,且n≥2,cn=b1﹣na1=1﹣n,
cn+1﹣cn=﹣1,
∴c2﹣c1=﹣1,
∴cn+1﹣cn=﹣1对∀n∈N*均成立,
∴数列{cn}是等差数列;
(2)证明:设数列{an}和{bn}的公差分别为d1,d2,下面考虑的cn取值,
由b1﹣a1n,b2﹣a2n,…,bn﹣ann,
考虑其中任意bi﹣ain,(i∈N*,且1≤i≤n),
则bi﹣ain=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,
=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),
下面分d1=0,d1>0,d1<0三种情况进行讨论,
①若d1=0,则bi﹣ain═(b1﹣a1n)+(i﹣1)d2,
当若d2≤0,则(bi﹣ain)﹣(b1﹣a1n)=(i﹣1)d2≤0,
则对于给定的正整数n而言,cn=b1﹣a1n,此时cn+1﹣cn=﹣a1,
∴数列{cn}是等差数列;
当d2>0,(bi﹣ain)﹣(bn﹣ann)=(i﹣n)d2>0,
则对于给定的正整数n而言,cn=bn﹣ann=bn﹣a1n,
此时cn+1﹣cn=d2﹣a1,
∴数列{cn}是等差数列;
此时取m=1,则c1,c2,…,是等差数列,命题成立;
②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,
故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,
则当n≥m时,(bi﹣ain)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),
因此当n≥m时,cn=b1﹣a1n,
此时cn+1﹣cn=﹣a1,故数列{cn}从第m项开始为等差数列,命题成立;
③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,
故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,
则当n≥s时,(bi﹣ain)﹣(bn﹣ann)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),
因此,当n≥s时,cn=bn﹣ann,
此时==﹣an+,
=﹣d2n+(d1﹣a1+d2)+,
令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,
下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,
若C≥0,取m=[+1],[x]表示不大于x的最大整数,
当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,
此时命题成立;
若C<0,取m=[]+1,
当n≥m时,
≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,
此时命题成立,
因此对任意正数M,存在正整数m,使得当n≥m时,>M;
综合以上三种情况,命题得证.
29.
【分析】(Ⅰ)用数学归纳法即可证明,
(Ⅱ)构造函数,利用导数判断函数的单调性,把数列问题转化为函数问题,即可证明,
(Ⅲ)由≥2xn+1﹣xn得﹣≥2(﹣)>0,继续放缩即可证明
【解答】解:(Ⅰ)用数学归纳法证明:xn>0,
当n=1时,x1=1>0,成立,
假设当n=k时成立,则xk>0,
那么n=k+1时,若xk+1<0,则0<xk=xk+1+ln(1+xk+1)<0,矛盾,
故xn+1>0,
因此xn>0,(n∈N*)
∴xn=xn+1+ln(1+xn+1)>xn+1,
因此0<xn+1<xn(n∈N*),
(Ⅱ)由xn=xn+1+ln(1+xn+1)得xnxn+1﹣4xn+1+2xn=xn+12﹣2xn+1+(xn+1+2)ln(1+xn+1),
记函数f(x)=x2﹣2x+(x+2)ln(1+x),x≥0
∴f′(x)=+ln(1+x)>0,
∴f(x)在(0,+∞)上单调递增,
∴f(x)≥f(0)=0,
因此xn+12﹣2xn+1+(xn+1+2)ln(1+xn+1)≥0,
故2xn+1﹣xn≤;
(Ⅲ)∵xn=xn+1+ln(1+xn+1)≤xn+1+xn+1=2xn+1,
∴xn≥,
由≥2xn+1﹣xn得﹣≥2(﹣)>0,
∴﹣≥2(﹣)≥…≥2n﹣1(﹣)=2n﹣2,
∴xn≤,
综上所述≤xn≤.
30.
【分析】(1)设{an}是公差为d的等差数列,{bn}是公比为q的等比数列,运用通项公式可得q=3,d=2,进而得到所求通项公式;
(2)求得cn=an+bn=2n﹣1+3n﹣1,再由数列的求和方法:分组求和,运用等差数列和等比数列的求和公式,计算即可得到所求和.
【解答】解:(1)设{an}是公差为d的等差数列,
{bn}是公比为q的等比数列,
由b2=3,b3=9,可得q==3,
bn=b2qn﹣2=3•3n﹣2=3n﹣1;
即有a1=b1=1,a14=b4=27,
则d==2,
则an=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1;
(2)cn=an+bn=2n﹣1+3n﹣1,
则数列{cn}的前n项和为
(1+3+…+(2n﹣1))+(1+3+9+…+3n﹣1)=n•2n+
=n2+.
31.
【分析】(Ⅰ)结合“G时刻”的定义进行分析;
(Ⅱ)可以采用假设法和递推法进行分析;
(Ⅲ)可以采用假设法和列举法进行分析.
【解答】解:(Ⅰ)根据题干可得,a1=﹣2,a2=2,a3=﹣1,a4=1,a5=3,a1<a2满足条件,2满足条件,a2>a3不满足条件,3不满足条件,
a2>a4不满足条件,4不满足条件,a1,a2,a3,a4,均小于a5,因此5满足条件,因此G(A)={2,5}.
(Ⅱ)因为存在an>a1,设数列A中第一个大于a1的项为ak,则ak>a1≥ai,其中2≤i≤k﹣1,所以k∈G(A),G(A)≠∅;
(Ⅲ)设A数列的所有“G时刻”为i1<i2<…<ik,
对于第一个“G时刻”i1,有>a1≥ai(i=2,3,…,i1﹣1),则
﹣a1≤﹣≤1.
对于第二个“G时刻”i1,有>≥ai(i=2,3,…,i1﹣1),则
﹣≤﹣≤1.
类似的﹣≤1,…,﹣≤1.
于是,k≥(﹣)+(﹣)+…+(﹣)+(﹣a1)=﹣a1.
对于aN,若N∈G(A),则=aN.
若N∉G(A),则aN≤,否则由(2)知,,…,aN,中存在“G时刻”与只有k个“G时刻”矛盾.
从而k≥﹣a1≥aN﹣a1.
32.
【分析】(Ⅰ)设等差数列{an}的公差为d,根据已知构造关于首项和公差方程组,解得答案;
(Ⅱ)根据bn=[an],列出数列{bn}的前10项,相加可得答案.
【解答】解:(Ⅰ)设等差数列{an}的公差为d,
∵a3+a4=4,a5+a7=6.
∴,
解得:,
∴an=;
(Ⅱ)∵bn=[an],
∴b1=b2=b3=1,
b4=b5=2,
b6=b7=b8=3,
b9=b10=4.
故数列{bn}的前10项和S10=3×1+2×2+3×3+2×4=24.
33.
【分析】(1)根据等比数列的通项公式列方程解出公比q,利用求和公式解出a1,得出通项公式;
(2)利用对数的运算性质求出bn,使用分项求和法和平方差公式计算.
【解答】解:(1)设{an}的公比为q,则﹣=,即1﹣=,
解得q=2或q=﹣1.
若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,
∴S6==63,∴a1=1.
∴an=2n﹣1.
(2)∵bn是log2an和log2an+1的等差中项,
∴bn=(log2an+log2an+1)=(log22n﹣1+log22n)=n﹣.
∴bn+1﹣bn=1.
∴{bn}是以为首项,以1为公差的等差数列.
设{(﹣1)nbn2}的前2n项和为Tn,则
Tn=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)
=b1+b2+b3+b4…+b2n﹣1+b2n
==
=2n2.
34.
【分析】(1){an}与{bn}不是无穷互补数列.由4∉A,4∉B,4∉A∪B=N*,即可判断;
(2)由an=2n,可得a4=16,a5=32,再由新定义可得b16=16+4=20,运用等差数列的求和公式,计算即可得到所求和;
(3)运用等差数列的通项公式,结合首项大于等于1,可得d=1或2,讨论d=1,2求得通项公式,结合新定义,即可得到所求数列的通项公式.
【解答】解:(1){an}与{bn}不是无穷互补数列.
理由:由an=2n﹣1,bn=4n﹣2,可得4∉A,4∉B,
即有4∉A∪B=N*,即有{an}与{bn}不是无穷互补数列;
(2)由an=2n,可得a4=16,a5=32,
由{an}与{bn}是无穷互补数列,可得b16=16+4=20,
即有数列{bn}的前16项的和为
(1+2+3+…+20)﹣(2+4+8+16)=×20﹣30=180;
(3)设{an}为公差为d(d为正整数)的等差数列且a16=36,则a1+15d=36,
由a1=36﹣15d≥1,可得d=1或2,
若d=1,则a1=21,an=n+20,bn=n(1≤n≤20),
与{an}与{bn}是无穷互补数列矛盾,舍去;
若d=2,则a1=6,an=2n+4,bn=.
综上可得,an=2n+4,bn=.
35.
【分析】(1)根据数列通项公式与前n项和公式之间的关系进行递推,结合等比数列的定义进行证明求解即可.
(2)根据条件建立方程关系进行求解就可.
【解答】解:(1)∵Sn=1+λan,λ≠0.
∴an≠0.
当n≥2时,an=Sn﹣Sn﹣1=1+λan﹣1﹣λan﹣1=λan﹣λan﹣1,
即(λ﹣1)an=λan﹣1,
∵λ≠0,an≠0.∴λ﹣1≠0.即λ≠1,
即=,(n≥2),
∴{an}是等比数列,公比q=,
当n=1时,S1=1+λa1=a1,
即a1=,
∴an=•()n﹣1.
(2)若S5=,
则若S5=1+λ[•()4]=,
即()5=﹣1=﹣,
则=﹣,得λ=﹣1.
36.
【分析】(Ⅰ)根据条件建立方程组关系,求出首项,利用数列的递推关系证明数列{an}是公比q=3的等比数列,即可求通项公式an;
(Ⅱ)讨论n的取值,利用分组法将数列转化为等比数列和等差数列即可求数列{|an﹣n﹣2|}的前n项和.
【解答】解:(Ⅰ)∵S2=4,an+1=2Sn+1,n∈N*.
∴a1+a2=4,a2=2S1+1=2a1+1,
解得a1=1,a2=3,
当n≥2时,an+1=2Sn+1,an=2Sn﹣1+1,
两式相减得an+1﹣an=2(Sn﹣Sn﹣1)=2an,
即an+1=3an,当n=1时,a1=1,a2=3,
满足an+1=3an,
∴=3,则数列{an}是公比q=3的等比数列,
则通项公式an=3n﹣1.
(Ⅱ)an﹣n﹣2=3n﹣1﹣n﹣2,
设bn=|an﹣n﹣2|=|3n﹣1﹣n﹣2|,
则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,
当n≥3时,3n﹣1﹣n﹣2>0,
则bn=|an﹣n﹣2|=3n﹣1﹣n﹣2,
此时数列{|an﹣n﹣2|}的前n项和Tn=3+﹣=,
则Tn==.
37.
【分析】(Ⅰ)利用已知条件求出等差数列的公差,求出通项公式,然后求解b1,b11,b101;
(Ⅱ)找出数列的规律,然后求数列{bn}的前1000项和.
【解答】解:(Ⅰ)Sn为等差数列{an}的前n项和,且a1=1,S7=28,7a4=28.
可得a4=4,则公差d=1.
an=n,
bn=[lgn],则b1=[lg1]=0,
b11=[lg11]=1,
b101=[lg101]=2.
(Ⅱ)由(Ⅰ)可知:b1=b2=b3=…=b9=0,b10=b11=b12=…=b99=1.
b100=b101=b102=b103=…=b999=2,b10,00=3.
数列{bn}的前1000项和为:9×0+90×1+900×2+3=1893.
38.
【分析】(Ⅰ)根据题意,由数列的递推公式可得a2与a3的值,又由a2,a3,a2+a3成等差数列,可得2a3=a2+(a2+a3),代入a2与a3的值可得q2=2q,解可得q的值,进而可得Sn+1=2Sn+1,进而可得Sn=2Sn﹣1+1,将两式相减可得an=2an﹣1,即可得数列{an}是以1为首项,公比为2的等比数列,由等比数列的通项公式计算可得答案;
(Ⅱ)根据题意Sn+1=qSn+1,同理有Sn=qSn﹣1+1,将两式相减可得an=qan﹣1,分析可得an=qn﹣1;又由双曲线x2﹣=1的离心率为en,且e2=2,分析可得e2==2,
解可得a2的值,由an=qn﹣1可得q的值,进而可得数列{an}的通项公式,再次由双曲线的几何性质可得en2=1+an2=1+3n﹣1,运用分组求和法计算可得答案.
【解答】解:(Ⅰ)根据题意,数列{an}的首项为1,即a1=1,
又由Sn+1=qSn+1,则S2=qa1+1,则a2=q,
又有S3=qS2+1,则有a3=q2,
若a2,a3,a2+a3成等差数列,即2a3=a2+(a2+a3),
则可得q2=2q,(q>0),
解可得q=2,
则有Sn+1=2Sn+1,①
进而有Sn=2Sn﹣1+1,②
①﹣②可得an=2an﹣1,
则数列{an}是以1为首项,公比为2的等比数列,
则an=1×2n﹣1=2n﹣1;
(Ⅱ)根据题意,有Sn+1=qSn+1,③
同理可得Sn=qSn﹣1+1,④
③﹣④可得:an=qan﹣1,
又由q>0,
则数列{an}是以1为首项,公比为q的等比数列,则an=1×qn﹣1=qn﹣1;
若e2=2,则e2==2,
解可得a2=,
则a2=q=,即q=,
an=1×qn﹣1=qn﹣1=()n﹣1,
则en2=1+an2=1+3n﹣1,
故e12+e22+…+en2=n+(1+3+32+…+3n﹣1)=n+.
39.
【分析】(Ⅰ)令n=1,可得a1=2,结合{an}是公差为3的等差数列,可得{an}的通项公式;
(Ⅱ)由(1)可得:数列{bn}是以1为首项,以为公比的等比数列,进而可得:{bn}的前n项和.
【解答】解:(Ⅰ)∵anbn+1+bn+1=nbn.
当n=1时,a1b2+b2=b1.
∵b1=1,b2=,
∴a1=2,
又∵{an}是公差为3的等差数列,
∴an=3n﹣1,
(Ⅱ)由(I)知:(3n﹣1)bn+1+bn+1=nbn.
即3bn+1=bn.
即数列{bn}是以1为首项,以为公比的等比数列,
∴{bn}的前n项和Sn==(1﹣3﹣n)=﹣.
40.
【分析】(1)根据题意,由ST的定义,分析可得ST=a2+a4=a2+9a2=30,计算可得a2=3,进而可得a1的值,由等比数列通项公式即可得答案;
(2)根据题意,由ST的定义,分析可得ST≤a1+a2+…ak=1+3+32+…+3k﹣1,由等比数列的前n项和公式计算可得证明;
(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅
,进而分析可以将原命题转化为证明SC≥2SB,分2种情况进行讨论:①、若B=∅,②、若B≠∅,可以证明得到SA≥2SB,即可得证明.
【解答】解:(1)等比数列{an}中,a4=3a3=9a2,
当T={2,4}时,ST=a2+a4=a2+9a2=30,
因此a2=3,从而a1==1,
故an=3n﹣1,
(2)ST≤a1+a2+…ak=1+3+32+…+3k﹣1=<3k=ak+1,
(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,
分析可得SC=SA+SC∩D,SD=SB+SC∩D,则SC+SC∩D﹣2SD=SA﹣2SB,
因此原命题的等价于证明SC≥2SB,
由条件SC≥SD,可得SA≥SB,
①、若B=∅,则SB=0,故SA≥2SB,
②、若B≠∅,由SA≥SB可得A≠∅,设A中最大元素为l,B中最大元素为m,
若m≥l+1,则其与SA<ai+1≤am≤SB相矛盾,
因为A∩B=∅,所以l≠m,则l≥m+1,
SB≤a1+a2+…am=1+3+32+…+3m﹣1=≤=,即SA≥2SB,
综上所述,SA≥2SB,
故SC+SC∩D≥2SD.
41、【分析】(Ⅰ)求出数列{an}的通项公式,再求数列{bn}的通项公式;
(Ⅱ)求出数列{cn}的通项,利用错位相减法求数列{cn}的前n项和Tn.
【解答】解:(Ⅰ)Sn=3n2+8n,
∴n≥2时,an=Sn﹣Sn﹣1=6n+5,
n=1时,a1=S1=11,∴an=6n+5;
∵an=bn+bn+1,
∴an﹣1=bn﹣1+bn,
∴an﹣an﹣1=bn+1﹣bn﹣1.
∴2d=6,
∴d=3,
∵a1=b1+b2,
∴11=2b1+3,
∴b1=4,
∴bn=4+3(n﹣1)=3n+1;
(Ⅱ)cn========6(n+1)•2n,
∴Tn=6[2•2+3•22+…+(n+1)•2n]①,
∴2Tn=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,
①﹣②可得
﹣Tn=6[2•2+22+23+…+2n﹣(n+1)•2n+1]
=12+6×﹣6(n+1)•2n+1
=(﹣6n)•2n+1=﹣3n•2n+2,
∴Tn=3n•2n+2.
42、【分析】(1)根据题意,由数列的递推公式,令n=1可得a12﹣(2a2﹣1)a1﹣2a2=0,将a1=1代入可得a2的值,进而令n=2可得a22﹣(2a3﹣1)a2﹣2a3=0,将a2=代入计算可得a3的值,即可得答案;
(2)根据题意,将an2﹣(2an+1﹣1)an﹣2an+1=0变形可得(an﹣2an+1)(an+an+1)=0,进而分析可得an=2an+1或an=﹣an+1,结合数列各项为正可得an=2an+1,结合等比数列的性质可得{an}是首项为a1=1,公比为的等比数列,由等比数列的通项公式计算可得答案.
【解答】解:(1)根据题意,an2﹣(2an+1﹣1)an﹣2an+1=0,
当n=1时,有a12﹣(2a2﹣1)a1﹣2a2=0,
而a1=1,则有1﹣(2a2﹣1)﹣2a2=0,解可得a2=,
当n=2时,有a22﹣(2a3﹣1)a2﹣2a3=0,
又由a2=,解可得a3=,
故a2=,a3=;
(2)根据题意,an2﹣(2an+1﹣1)an﹣2an+1=0,
变形可得(an﹣2an+1)(an+1)=0,
即有an=2an+1或an=﹣1,
又由数列{an}各项都为正数,
则有an=2an+1,
故数列{an}是首项为a1=1,公比为的等比数列,
则an=1×()n﹣1=()n﹣1,
故an=()n﹣1.