- 1.15 MB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
绝密★启用前
2013年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ
注意事项:
考生在答题前请认真阅读本注意事项及各题答题要求
1.本试卷共4页,均为非选择题(第1题-第20题,共20题)。本卷满分为160分。考试时间为120分钟。考试结束后,请将本试卷和答题卡一并交回。
2.答题前请务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B铅笔绘,写清楚,线条,符号等须加黑加粗。
参考公式:
样本数据的方差,其中。
棱锥的体积公式:,其中是锥体的底面积,为高。
棱柱的体积公式:,其中是柱体的底面积,为高。
一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应位置上。
1、函数的最小正周期为 ▲ 。
2、设 (为虚数单位),则复数的模为 ▲ 。
3、双曲线的两条渐近线的方程为 ▲ 。
4、集合{-1,0,1}共有 ▲ 个子集。
5、右图是一个算法的流程图,则输出的n的值是 ▲ 。
6、抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:
运动员
第1次
第2次
第3次
第4次
第5次
甲
87
91
90
89
93
乙
89
90
91
88
92
则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ 。
7、现有某类病毒记作为,其中正整数可以任意选取,则都取到奇数的概率为 ▲ 。
8、如图,在三棱柱A1B1C1 -ABC中,D、E、F分别为AB、AC、A A1的中点,设三棱锥F-ADE的体积为,三棱柱A1B1C1 -ABC的体积为,则:= ▲ 。
9、抛物线在处的切线与坐标轴围成三角形区域为D(包含三角形内部与边界)。若点P(x,y)是区域D内的任意一点,则的取值范围是 ▲ 。
10、设D、E分别是△ABC的边AB、BC上的点,且。若(、均为实数),则+的值为 ▲ 。
11、已知是定义在R上的奇函数。当时,,则不等式的解集用区间表示为 ▲ 。
12、在平面直角坐标系xoy中,椭圆C的方程为,右焦点为F,右准线为,短轴的一个端点为B。设原点到直线BF的距离为,F到的距离为。若,则椭圆C的离心率为 ▲ 。
13、在平面直角坐标系xoy中,设定点A(a,a),P是函数图象上的一动点。若点P、A之间的最短距离为,则满足条件的实数a的所有值为= ▲ 。
14、在正项等比数列中, ,则满足的最大正整数n的值为 ▲ 。
二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.
15、(本小题满分14分)
已知向量。
(1)若,求证:;
(2)设,若,求的值。
16、(本小题满分14分)
如图,在三棱锥S-ABC中,平面平面SBC,,AS=AB。过A作,垂足为F,点E、G分别为线段SA、SC的中点。
求证:(1)平面EFG//平面ABC;
(2)。
17、(本小题满分14分)
如图,在平面直角坐标系xoy中,点A(0,3),直线,设圆C的半径为1,圆心在直线上。
(1)若圆心C也在直线上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标的取值范围。
18、(本小题满分16分)
如图,游客从某旅游景区的景点A处下山至C处有两种路径。一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C。
现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50米/分钟。在甲出发2分钟后,乙从A乘坐缆车到B,在B处停留1分钟后,再从B匀速步行到C。假设缆车速度为130米/分钟,山路AC的长为1260米,经测量,。
(1)求索道AB的长;
(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?
(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?
19、(本小题满分16分)
设是首项为、公差为的等差数列,为其前项和。记,其中c为实数。
(1)若c=0,且成等比数列,证明:
(2)若为等差数列,证明:c=0。
20、(本小题满分16分)
设函数,其中为实数。
(1)若在上是单调减函数,且在上有最小值,求的取值范围;
(2)若在上是单调增函数,试求的零点个数,并证明你的结论。
绝密★启用前
2013年普通高等学校招生全国统一考试(江苏卷)
数学Ⅱ(附加题)
注 意 事 项
考生在答题前请认真阅读本注意事项及各题答题要求:
1.本试卷共2页,均为非选择题(第21题~第23题)。本卷满分为40分。考试时间为30分钟。考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效。
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
21.[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.[选修4 - 1:几何证明选讲](本小题满分10分)
如图,AB和BC分别与圆O相切于点D、C,AC经过圆心O,且BC=2OC。
求证:AC=2AD。
B.[选修4 - 2:矩阵与变换](本小题满分10分)
已知矩阵,求矩阵.
C.[选修4 - 4:坐标系与参数方程](本小题满分10分)
在平面直角坐标系中,直线的参数方程为(为参数),曲线C的参数方程为(为参数)。试求直线和曲线C的普通方程,并求出它们的公共点的坐标。
D.[选修4 - 5:不等式选讲](本小题满分10分)
已知≥>0,求证:≥。
【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
22.(本小题满分10分)
如图,在直三棱柱中,AB⊥AC,AB=AC=2,=4,点D是BC的中点。
(1)求异面直线与所成角的余弦值;
(2)求平面与平面所成二面角的正弦值。
23.(本小题满分10分)
设数列:1,-2,-2,3,3,3,-4,-4,-4,-4,…,,…
即当时,。记。
对于,定义集合=﹛|为的整数倍,且1≤≤}
(1)求中元素个数;
(2)求集合中元素个数。
相关文档
- 人教历史2019高考一轮选习练非选题2021-05-147页
- 高考化学工艺流程题562752021-05-1417页
- 经典高考英语语法填空答题技巧及强2021-05-148页
- 通用版高考地理复习专题资料地球的2021-05-144页
- 2008高考生物复习 必修二基础知识2021-05-149页
- 2017年度高考英语(完形填空、书面表2021-05-146页
- 2011山东高考理综生物完美完美精校2021-05-145页
- 高考英语一轮复习同步精炼 Unit 3 2021-05-148页
- 高考一轮复习人教版必修一气候专题2021-05-144页
- 新课标卷1高考理综试卷生物部分2021-05-147页