- 314.50 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
学案39 数学归纳法
导学目标: 1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.
自主梳理
1.归纳法
由一系列有限的特殊事例得出________的推理方法叫归纳法.根据推理过程中考查的对象是涉及事物的全体或部分可分为____归纳法和________归纳法.
2.数学归纳法
设{Pn}是一个与正整数相关的命题集合,如果:(1)证明起始命题________(或________)成立;(2)在假设______成立的前提下,推出________也成立,那么可以断定{Pn}对一切正整数成立.
3.数学归纳法证题的步骤
(1)(归纳奠基)证明当n取第一个值__________时命题成立.
(2)(归纳递推)假设______________________________时命题成立,证明当________时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.
自我检测
1.用数学归纳法证明:“1+a+a2+…+an+1= (a≠1)”在验证n=1时,左端计算所得的项为( )
A.1 B.1+a
C.1+a+a2 D.1+a+a2+a3
2.如果命题P(n)对于n=k (k∈N*)时成立,则它对n=k+2也成立,又若P(n)对于n=2时成立,则下列结论正确的是( )
A.P(n)对所有正整数n成立
B.P(n)对所有正偶数n成立
C.P(n)对所有正奇数n成立
D.P(n)对所有大于1的正整数n成立
3.(2011·台州月考)证明<1++++…+1),当n=2时,中间式子等于( )
A.1 B.1+
C.1++ D.1+++
4.用数学归纳法证明“2n>n2+1对于n>n0的正整数n都成立”时,第一步证明中的起始值n0应取( )
A.2 B.3 C.5 D.6
5.用数学归纳法证明“n3+(n+1)3+(n+2)3 (n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开( )
A.(k+3)3 B.(k+2)3
C.(k+1)3 D.(k+1)3+(k+2)3
探究点一 用数学归纳法证明等式
例1 对于n∈N*,用数学归纳法证明:
1·n+2·(n-1)+3·(n-2)+…+(n-1)·2+n·1=n(n+1)(n+2).
变式迁移1 (2011·金华月考)用数学归纳法证明:
对任意的n∈N*,1-+-+…+-=++…+.
探究点二 用数学归纳法证明不等式
例2 用数学归纳法证明:对一切大于1的自然数,不等式…>均成立.
变式迁移2 已知m为正整数,用数学归纳法证明:当x>-1时,(1+x)m≥1+mx.
探究点三 用数学归纳法证明整除问题
例3 用数学归纳法证明:当n∈N*时,an+1+(a+1)2n-1能被a2+a+1整除.
变式迁移3 用数学归纳法证明:当n为正整数时,f(n)=32n+2-8n-9能被64整除.
从特殊到一般的思想
例 (14分)已知等差数列{an}的公差d大于0,且a2、a5是方程x2-12x+27=0的两根,数列{bn}的前n项和为Tn,且Tn=1-bn.
(1)求数列{an}、{bn}的通项公式;
(2)设数列{an}的前n项和为Sn,试比较与Sn+1的大小,并说明理由.
【答题模板】
解 (1)由已知得,又∵{an}的公差大于0,
∴a5>a2,∴a2=3,a5=9.∴d===2,a1=1,
∴an=1+(n-1)×2=2n-1.[2分]
∵Tn=1-bn,∴b1=,当n≥2时,Tn-1=1-bn-1,
∴bn=Tn-Tn-1=1-bn-,
化简,得bn=bn-1,[4分]
∴{bn}是首项为,公比为的等比数列,
即bn=·n-1=,
∴an=2n-1,bn=.[6分]
(2)∵Sn=n=n2,∴Sn+1=(n+1)2,=.
以下比较与Sn+1的大小:
当n=1时,=,S2=4,∴S5.
猜想:n≥4时,>Sn+1.[9分]
下面用数学归纳法证明:
①当n=4时,已证.
②假设当n=k (k∈N*,k≥4)时,>Sk+1,即>(k+1)2.[10分]
那么,n=k+1时,==3·>3(k+1)2=3k2+6k+3=(k2+4k+4)+2k2+2k-1>[(k+1)+1]2=S(k+1)+1,∴n=k+1时,>Sn+1也成立.[12分]
由①②可知n∈N*,n≥4时,>Sn+1都成立.
综上所述,当n=1,2,3时,Sn+1.[14分]
【突破思维障碍】
1.归纳——猜想——证明是高考重点考查的内容之一,此类问题可分为归纳性问题和存在性问题,本例中归纳性问题需要从特殊情况入手,通过观察、分析、归纳、猜想,探索出一般规律.
2.数列是定义在N*上的函数,这与数学归纳法运用的范围是一致的,并且数列的递推公式与归纳原理实质上是一致的,数列中有不少问题常用数学归纳法解决.
【易错点剖析】
1.严格按照数学归纳法的三个步骤书写,特别是对初始值的验证不可省略,有时要取两个(或两个以上)初始值进行验证;初始值的验证是归纳假设的基础.
2.在进行n=k+1命题证明时,一定要用n=k时的命题,没有用到该命题而推理证明的方法不是数学归纳法.
1.数学归纳法:先证明当n取第一个值n0时命题成立,然后假设当n=k (k∈N*,k≥n0)时命题成立,并证明当n=k+1时命题也成立,那么就证明了这个命题成立.这是因为第一步首先证明了n取第一个值n0时,命题成立,这样假设就有了存在的基础,至少k=n0时命题成立,由假设合理推证出n=k+1时命题也成立,这实质上是证明了一种循环,如验证了n0=1成立,又证明了n=k+1也成立,这就一定有n=2成立,n=2成立,则n=3成立,n=3成立,则n=4也成立,如此反复以至无穷,对所有n≥n0的整数就都成立了.
2.(1)第①步验证n=n0使命题成立时n0不一定是1,是使命题成立的最小正整数.
(2)第②步证明n=k+1时命题也成立的过程中一定要用到归纳递推,否则就不是数学归纳法.
(满分:75分)
一、选择题(每小题5分,共25分)
1.用数学归纳法证明命题“当n是正奇数时,xn+yn能被x+y整除”,在第二步时,正确的证法是( )
A.假设n=k(k∈N*)时命题成立,证明n=k+1命题成立
B.假设n=k(k是正奇数)时命题成立,证明n=k+1命题成立
C.假设n=2k+1 (k∈N*)时命题成立,证明n=k+1命题成立
D.假设n=k(k是正奇数)时命题成立,证明n=k+2命题成立
2.已知f(n)=+++…+,则( )
A.f(n)中共有n项,当n=2时,f(2)=+
B.f(n)中共有n+1项,当n=2时,f(2)=++
C.f(n)中共有n2-n项,当n=2时,f(2)=+
D.f(n)中共有n2-n+1项,当n=2时,f(2)=++
3.如果命题P(n)对n=k成立,则它对n=k+1也成立,现已知P(n)对n=4不成立,则下列结论正确的是( )
A.P(n)对n∈N*成立
B.P(n)对n>4且n∈N*成立
C.P(n)对n<4且n∈N*成立
D.P(n)对n≤4且n∈N*不成立
4.(2011·日照模拟)用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上( )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
5.(2011·湛江月考)已知f(x)是定义域为正整数集的函数,对于定义域内任意的k,若f(k)≥k2成立,则f(k+1)≥(k+1)2成立,下列命题成立的是( )
A.若f(3)≥9成立,且对于任意的k≥1,均有f(k)≥k2成立
B.若f(4)≥16成立,则对于任意的k≥4,均有f(k)的过程中,由n=k推导n=k+1时,不等式的左边增加的式子是______________.
8.凸n边形有f(n)条对角线,凸n+1边形有f(n+1)条对角线,则f(n+1)=f(n)+________.
三、解答题(共38分)
9.(12分)用数学归纳法证明1+≤1+++…+≤+n (n∈N*).
10.(12分)(2011·新乡月考)数列{an}满足an>0,Sn=(an+),求S1,S2,猜想Sn,并用数学归纳法证明.
11.(14分)(2011·郑州月考)已知函数f(x)=e-(其中e为自然对数的底数).
(1)判断f(x)的奇偶性;
(2)在(-∞,0)上求函数f(x)的极值;
(3)用数学归纳法证明:当x>0时,对任意正整数n都有f()52+1,∴n0=5.]
5.A [假设当n=k时,原式能被9整除,
即k3+(k+1)3+(k+2)3能被9整除.
当n=k+1时,(k+1)3+(k+2)3+(k+3)3为了能用上面的归纳假设,只需将(k+3)3展开,让其出现k3即可.]
课堂活动区
例1 解题导引 用数学归纳法证明与正整数有关的一些等式命题,关键在于弄清等式两边的构成规律:等式的两边各有多少项,由n=k到n=k+1时,等式的两边会增加多少项,增加怎样的项.
证明 设f(n)=1·n+2·(n-1)+3·(n-2)+…+(n-1)·2+n·1.
(1)当n=1时,左边=1,右边=1,等式成立;
(2)假设当n=k (k≥1且k∈N*)时等式成立,
即1·k+2·(k-1)+3·(k-2)+…+(k-1)·2+k·1
=k(k+1)(k+2),
则当n=k+1时,
f(k+1)=1·(k+1)+2[(k+1)-1]+3[(k+1)-2]+…+[(k+1)-1]·2+(k+1)·1
=f(k)+1+2+3+…+k+(k+1)
=k(k+1)(k+2)+(k+1)(k+1+1)
=(k+1)(k+2)(k+3).
由(1)(2)可知当n∈N*时等式都成立.
变式迁移1 证明 (1)当n=1时,
左边=1-===右边,
∴等式成立.
(2)假设当n=k (k≥1,k∈N*)时,等式成立,即
1-+-+…+-
=++…+.
则当n=k+1时,
1-+-+…+-+-
=++…++-
=++…+++
=++…+++,
即当n=k+1时,等式也成立,
所以由(1)(2)知对任意的n∈N*等式都成立.
例2 解题导引 用数学归纳法证明不等式问题时,从n=k到n=k+1的推证过程中,证明不等式的常用方法有比较法、分析法、综合法、放缩法等.
证明 (1)当n=2时,左边=1+=;右边=.
∵左边>右边,∴不等式成立.
(2)假设当n=k (k≥2,且k∈N*)时不等式成立,
即…>.
则当n=k+1时,
…
>·==
>==.
∴当n=k+1时,不等式也成立.
由(1)(2)知,对于一切大于1的自然数n,不等式都成立.
变式迁移2 证明 (1)当m=1时,原不等式成立;
当m=2时,左边=1+2x+x2,右边=1+2x,
因为x2≥0,所以左边≥右边,原不等式成立;
(2)假设当m=k(k≥2,k∈N*)时,不等式成立,
即(1+x)k≥1+kx,则当m=k+1时,
∵x>-1,∴1+x>0.
于是在不等式(1+x)k≥1+kx两边同时乘以1+x得,
(1+x)k·(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2
≥1+(k+1)x.
所以(1+x)k+1≥1+(k+1)x,
即当m=k+1时,不等式也成立.
综合(1)(2)知,对一切正整数m,不等式都成立.
例3 解题导引 用数学归纳法证明整除问题,由k过渡到k+1时常使用“配凑法”.在证明n=k+1成立时,先将n=k
+1时的原式进行分拆、重组或者添加项等方式进行整理,最终将其变成一个或多个部分的和,其中每个部分都能被约定的数(或式子)整除,从而由部分的整除性得出整体的整除性,最终证得n=k+1时也成立.
证明 (1)当n=1时,a2+(a+1)=a2+a+1能被a2+a+1整除.
(2)假设当n=k (k≥1且k∈N*)时,
ak+1+(a+1)2k-1能被a2+a+1整除,
则当n=k+1时,
ak+2+(a+1)2k+1=a·ak+1+(a+1)2(a+1)2k-1
=a·ak+1+a·(a+1)2k-1+(a2+a+1)(a+1)2k-1
=a[ak+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-1,
由假设可知a[ak+1+(a+1)2k-1]能被a2+a+1整除,
∴ak+2+(a+1)2k+1也能被a2+a+1整除,
即n=k+1时命题也成立.
综合(1)(2)知,对任意的n∈N*命题都成立.
变式迁移3 证明 (1)当n=1时,f(1)=34-8-9=64,
命题显然成立.
(2)假设当n=k (k≥1,k∈N*)时,
f(k)=32k+2-8k-9能被64整除.
则当n=k+1时,
32(k+1)+2-8(k+1)-9=9(32k+2-8k-9)+9·8k+9·9-8(k+1)-9=9(32k+2-8k-9)+64(k+1)
即f(k+1)=9f(k)+64(k+1)
∴n=k+1时命题也成立.
综合(1)(2)可知,对任意的n∈N*,命题都成立.
课后练习区
1.D [A、B、C中,k+1不一定表示奇数,只有D中k为奇数,k+2为奇数.]
2.D
3.D [由题意可知,P(n)对n=3不成立(否则P(n)对n=4也成立).同理可推P(n)对n=2,n=1也不成立.]
4.D [∵当n=k时,左端=1+2+3+…+k2,
当n=k+1时,
左端=1+2+3+…+k2+(k2+1)+…+(k+1)2,
∴当n=k+1时,左端应在n=k的基础上加上
(k2+1)+(k2+2)+(k2+3)+…+(k+1)2.]
5.D [f(4)=25>42,∴k≥4,均有f(k)≥k2.
仅有D选项符合题意.]
6.2k+1
解析 ∵当n=k+1时,
左边=1+2+…+k+(k+1)+k+…+2+1,
∴从n=k到n=k+1时,应添加的代数式为(k+1)+k=2k+1.
7.
解析 不等式的左边增加的式子是
+-=.
8.n-1
解析 ∵f(4)=f(3)+2,f(5)=f(4)+3,
f(6)=f(5)+4,…,∴f(n+1)=f(n)+n-1.
9.证明 (1)当n=1时,左边=1+,右边=+1,
∴≤1+≤,命题成立.(2分)
当n=2时,左边=1+=2;右边=+2=,
∴2<1+++<,命题成立.(4分)
(2)假设当n=k(k≥2,k∈N*)时命题成立,
即1+<1+++…+<+k,(6分)
则当n=k+1时,
1+++…++++…+>1++2k·=1+.(8分)
又1+++…++++…+<+k+2k·=+(k+1),
即n=k+1时,命题也成立.(10分)
由(1)(2)可知,命题对所有n∈N*都成立.(12分)
10.解 ∵an>0,∴Sn>0,
由S1=(a1+),变形整理得S=1,
取正根得S1=1.
由S2=(a2+)及a2=S2-S1=S2-1得
S2=(S2-1+),
变形整理得S=2,取正根得S2=.
同理可求得S3=.由此猜想Sn=.(4分)
用数学归纳法证明如下:
(1)当n=1时,上面已求出S1=1,结论成立.
(6分)
(2)假设当n=k时,结论成立,即Sk=.
那么,当n=k+1时,
Sk+1=(ak+1+)=(Sk+1-Sk+)
=(Sk+1-+).
整理得S=k+1,取正根得Sk+1=.
故当n=k+1时,结论成立.(11分)
由(1)、(2)可知,对一切n∈N*,Sn=都成立.
(12分)
11.(1)解 ∵函数f(x)定义域为{x∈R|x≠0}
且f(-x)===f(x),
∴f(x)是偶函数.(4分)
(2)解 当x<0时,f(x)=,
f′(x)=+ (-)
=-(2x+1),(6分)
令f′(x)=0有x=-,
当x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,-)
-
(-,0)
f′(x)
+
0
-
f(x)
增
极大值
减
由表可知:当x=-时,f(x)取极大值4e-2,
无极小值.(8分)
(3)证明 当x>0时f(x)=,∴f()=x2e-x.
考虑到:x>0时,不等式f()0),
∵x>0时,g′(x)=ex-1>0,∴g(x)是增函数,
故g(x)>g(0)=1>0,即ex>x(x>0).
所以当n=1时,不等式(ⅰ)成立.(10分)
②假设n=k(k≥1,k∈N*)时,不等式(ⅰ)成立,
即xk0),
h′(x)=(k+1)!ex-(k+1)xk=(k+1)(k!ex-xk)>0,
故h(x)=(k+1)!·ex-xk+1(x>0)为增函数,
∴h(x)>h(0)=(k+1)!>0,
∴xk+1<(k+1)!·ex,
即n=k+1时,不等式(ⅰ)也成立,(13分)
由①②知不等式(ⅰ)对一切n∈N*都成立,
故当x>0时,原不等式对n∈N*都成立.(14分)