- 524.50 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2013-2017年新课标I卷高考理科数学解答题
概率统计(随机变量及其分布列 本小题满分12分)
(2017全国1.理数.19)(12分)
为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95
10.12
9.96
9.96
10.01
9.92
9.98
10.04
10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95
经计算得,,其中为抽取的第个零件的尺寸,.
用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01).
附:若随机变量服从正态分布,则,
,.
【考点】:统计与概率。
【思路】:(1)这是典型的二项分布,利用正态分布的性质计算即可。(2)考察正态分布,代入运算即可。
【解析】:
(1)
由题意可得,X满足二项分布,
因此可得
(2)
由(1)可得,属于小概率事件,故而如果出现
的零件,需要进行检查。
由题意可得,故而在范围外存在9.22这一个数据,因此需要进行检查。此时:,
。
(2016全国1.理数.19)(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.
(I)求的分布列;
(II)若要求,确定的最小值;
(III)以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个?
【答案】(I)见解析(II)19(III)
【解析】
试题分析:(I)先确定X的取值分别为16,17,18,18,20,21,22,,再用相互独立事件概率模型求概率,然后写出分布列;(II)通过频率大小进行比较;(III)分别求出n=9,n=20的期望,根据时所需费用的期望值小于时所需费用的期望值,应选.
所以的分布列为
[来源:学优高考网gkstk]
16
17
18
19
20
21
22
(Ⅱ)由(Ⅰ)知,,故的最小值为19.
(Ⅲ)记表示2台机器在购买易损零件上所需的费用(单位:元).
当时,
.
当时,
.
可知当时所需费用的期望值小于时所需费用的期望值,故应选.
考点:概率与统计、随机变量的分布列
【名师点睛】本题把随机变量的分布列与统计及函数结合在一起进行考查,有一定综合性但难度不是太大大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.
(2015全国1.理数.19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x1和年销售量y1(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
46.6
56.3
6.8
289.8
1.6
1469
108.8
表中w1 =1, , =
(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(i) 年宣传费x=49时,年销售量及年利润的预报值是多少?
(ii) 年宣传费x为何值时,年利率的预报值最大?
附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:
,
【答案】(Ⅰ)适合作为年销售关于年宣传费用的回归方程类型(Ⅱ)(Ⅲ)46.24
∴关于的回归方程为.……6分
考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识
(2014全国1.理数.18)(本小题满分12分)
从某企业的某种产品中抽取件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
质量指标值
(1)求这件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表);
(2)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数,近似为样本方差.
(i)利用该正态分布,求;
(ii)某用户从该企业购买了件这种产品,记表示这件产品中质量指标值位于区间的产品件数.利用(i)的结果,求.
附:.
若,则,.
解:(Ⅰ)
(Ⅱ)(ⅰ)因为服从正态分布,,,所以
所以
又 若~,则,
所以
(ⅱ)因为表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,服从二项分布,即~,所以
(2013全国1.理数. 19)(本小题满分12分)
一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.
假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.
【解析】.设第一次取出的4件产品中恰有3件优质品为事件A,第一次取出的4件产品中全为优质品为事件B,第二次取出的4件产品都是优质品为事件C,第二次取出的1件产品是优质品为事件D,这批产品通过检验为事件E,根据题意有E=(AB)∪(CD),且AB与CD互斥,
∴P(E)=P(AB)+P(CD)=P(A)P(B|A)+P(C)P(D|C)=+=.…6分
(Ⅱ)X的可能取值为400,500,800,并且
P(X=400)=1-=,P(X=500)=,P(X=800)==,
∴X的分布列为
X
400
500
800
P
……10分
EX=400×+500×+800×=506.25 ……12分