- 140.00 KB
- 2021-05-23 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.A、B两球在光滑水平面上做相向运动,已知mA>mB,当两球相碰后,其中一球停止,则可以断定 ( )
A.碰前A的动量与B的动量大小相等
B.碰前A的动量大于B的动量
C.若碰后A的速度为零,则碰前A的动量大于B的动量
D.若碰后B的速度为零,则碰前A的动量大于B的动量
解析:A、B两球动量守恒,有mAvA+mBvB=mAvA′+mBvB′。若vA′=0,则碰前A的动量大于B的动量;若vB′=0,则碰前A的动量小于B的动量。
答案:C
2.如图1所示,质量为M的小车静止在光滑的水平面上,小车上AB部分是半径为R的四分之一光滑圆弧,BC部分是粗糙的水平面。现把质量为m的小物体从A点由静止释放,m与BC部分间的动摩擦因数为μ,最终小物体与小车相对静止于B、C之间的D点,则B、D间的距离x随各量变化的情况是( )
图1
A.其他量不变,R越大x越大
B.其他量不变,μ越大x越大
C.其他量不变,m越大x越大
D.其他量不变,M越大x越大
解析:两个物体组成的系统水平方向的动量是守恒的,所以当两物体相对静止时,系统水平方向的总动量为零,则两物体最终会停止运动,由能量守恒有μmgx=mgR,解得x=,故选项A是正确的。
答案:A
3.如图2所示,设质量为M的导弹运动到空中最高点时速度为v0,突然炸成两块,质量为m的一块以速度v沿v0的方向飞去,则另一块的运动( )
图2
A.一定沿v0的方向飞去
B.一定沿v0的反方向飞去
C.可能做自由落体运动
D.以上说法都不对
解析:根据动量守恒得v′=。mv可能大于、小于或等于Mv0,所以v′可能小于、大于或等于零。
答案:C
4.一位质量为m的运动员从下蹲状态向上起跳,经Δt时间,身体伸直并刚好离开地面,速度为v。在此过程中( )
A.地面对他的冲量为mv+mgΔt,地面对他做的功为mv2
B.地面对他的冲量为mv+mgΔt,地面对他做的功为零
C.地面对他的冲量为mv,地面对他做的功为mv2
D.地面对他的冲量为mv-mgΔt,地面对他做的功为零
解析:在运动员从下蹲状态向上起跳过程中,由动量定理I-mgΔt=mv,即I=mv+mgΔt。在此过程中,运动员双脚在地面对其弹力作用下未离开地面,故地面对运动员不做功,故B正确。
答案:B
5.如图3所示,质量为m的物体从半径为R的内壁光滑的半圆形槽左侧最高点A由静止开始滑下,不计空气阻力,则下列判断错误的是( )
图3
A.若半圆槽固定不动,物体可滑到右侧最高点B
B.若半圆槽固定不动,物体到达底部C点时动能为mgR
C.若半圆槽与桌面间无摩擦,物体可滑到右边的最高点B
D.若半圆槽与桌面间无摩擦,物体到达底部C点时的动能为mgR
解析:半圆槽固定不动时,物体滑动过程中机械能守恒,所以A、B正确;半圆槽与桌面间无摩擦时,设物体滑到右边的最大高度为h,由系统的机械能守恒和水平方向动量守恒得0=(m+M)v,mgR=(M+m)v2+mgh,
解得h=R,C正确;物体到达C点时,半圆槽有一定动能,故物体动能小于mgR,D错误。
答案:D
6. (2012·兰州模拟)如图4所示为甲、乙两物体碰撞相互作用前后的v-t图像,则由图像可知下列判断错误的是( )
图4
A.一定是甲物体追击乙物体发生碰撞
B.可能是乙物体追击甲物体发生碰撞
C.甲、乙两物体的质量比为3∶2
D.甲、乙两物体作用前后总动能不变
解析:由v-t图像可知,是甲物体追击乙物体发生碰撞,A正确B错误;甲、乙两物体相互作用,系统所受合外力为零,动量守恒,由动量守恒定律m1v1+m2v2=m1v1′+m2v2′,解得m1∶m2=3∶2,C正确;计算出碰撞前后甲、乙两物体的动能,可知甲、乙两物体作用前后总动能不变,D正确。
答案:B
7.如图5所示,子弹水平射入放在光滑水平地面上静止的木块,子弹未穿透木块,此过程木块动能增加了6 J,那么此过程产生的内能可能为( )
图5
①16 J ②12 J
③6 J ④4 J
A.①② B.②③ C. ②③ D. ①④
解析:设子弹的质量为m0,初速度为v0,木块质量为m,则子弹打入木块过程中,子弹与木块组成的系统动量守恒,即:m0v0=(m+m0)v,此过程产生的内能等于系统损失的动能,即:E=m0v-(m+m0)v2=()m0v,而木块获得的动能E木=m(v0)2=6 J,两式相除得:=>1。
答案:A
8.(2011·全国卷改编)质量为M、内壁间距为L的箱子静止于光滑的水平面上,箱子中间有一质量为m的小物块,小物块与箱子底板间的动摩擦因数为μ
。初始时小物块停在箱子正中间,如图6所示。现给小物块一水平向右的初速度v,小物块与箱壁碰撞N次后恰又回到箱子正中间,并与箱子保持相对静止。设碰撞都是弹性的,则整个过程中,系统损失的动能为( )
图6
①mv2 ④v2
②NμmgL ③NμmgL
解析:小物块与箱子作用过程中满足动量守恒,最后恰好又回到箱子正中间。二者相对静止,即为共速,设速度为v1,mv=(m+M)v1,系统损失动能Ek=mv2-(M+m)v=;由于碰撞为弹性碰撞,故碰撞时不损失能量,系统损失的动能等于系统产生的热量,即ΔEk=Q=NμmgL。
答案:B
A.①③ B.②④ C.①④ D.②③
9.如图7所示,质量为m的人立于平板车上,人车的总质量为M,人与车以速度v1在光滑水平面上向东运动。当此人相对于车以速度v2竖直跳起时,车的速度变为( )
图7
A.,向东 B.,向东
C.,向东 D.v1,向东
解析:人相对于车以速度v2竖直跳起时,水平方向与车的相对速度为0,即与车同速,由水平方向系统动量守恒易得:车速仍为v1,方向向东,所以D正确。
答案:D
10.在一条直线上,运动方向相反的两球发生正碰。以球1的运动方向为正,碰前球1、球2的动量分别是p1=6 kg·m/s,p2=-8 kg·m/s。若两球所在水平面是光滑的,碰后各自的动量可能是( )
①p1′=4 kg·m/s,p2′=-6 kg·m/s
②p1′=-4 kg·m/s,p2′=2 kg·m/s
③p1′=-8 kg·m/s,p2′=6 kg·m/s
④p1′=-12 kg·m/s,p2′=10 kg·m/s
A.①③ B.②④ C. ②③ D. ①④
解析:解答本题时要注意,两球的碰撞不一定是弹性碰撞,所以,它们在碰撞过程中动量守恒,但动能不一定守恒,一般情况下,要有一部分机械能转化为内能,除此之外,还要注意它们的速度关系。
经过计算可知,4种情况均符合动量守恒。
一般来说,在碰撞过程中,要有一部分机械能转化为内能,即系统会损失一部分机械能,即有
+≥+
经计算知, ④不符合上述关系。
再仔细分析①、②、③中的速度关系,发现在①中,碰后两小球的速度方向不变,好像二者相互穿过一样(如图所示),这显然是不可能的,所以①错误。
同样对②、③进行分析,可以判断②、③是正确的。
答案:C
11.两个质量分别为M1和M2的劈A和B,高度相同,放在光滑水平面上。A和B的倾斜面都是光滑曲面,曲面下端与水平面相切,如图8所示。一质量为m的物块位于劈A的倾斜面上,距水平面的高度为h。物块从静止开始滑下,然后又滑上劈B。求物块在B上能够达到的最大高度。
图8
解析:设物块到达劈A的底端时,物块和A的速度大小分别为v和V,由机械能守恒和动量守恒得
mgh=mv2+M1V2①
M1V=mv②
设物块在劈B上达到的最大高度为h′,此时物块和B的共同速度大小为V′,由机械能守恒和动量守恒得
mgh′+(M2+m)V′2=mv2③
mv=(M2+m)V′④
联立①②③④式得
h′=h。
答案:h
12.(2011·新课标全国卷)如图9,A、B、C三个木块的质量均为m,置于光滑的水平桌面上,B、C之间有一轻质弹簧,弹簧的两端与木块接触而不固连。将弹簧压紧到不能再压缩时用细线把B和C紧连,使弹簧不能伸展,以至于B、C可视为一个整体。现A以初速v0沿B、C的连线方向朝B运动,与B相碰并粘合在一起,以后细线突然断开,弹簧伸展,从而使C与A、B分离。已知C离开弹簧后的速度恰为v0。求弹簧释放的势能。
图9
解析:设碰后A、B和C的共同速度大小为v,由动量守恒定律得
3mv=mv0①
设C离开弹簧时,A、B的速度大小为v1,由动量守恒定律得
3mv=2mv1+mv0②
设弹簧的弹性势能为Ep,从细线断开到C与弹簧分开的过程中机械能守恒,有
(3m)v2+Ep=(2m)v+mv③
由①②③式得弹簧所释放的势能为
Ep=mv。
答案:mv