• 29.00 KB
  • 2021-05-24 发布

高中物理 第十七章 波粒二象性 5 不确定性关系发展简史素材 新人教版选修3-5

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎5不确定性关系 ‎ 发展简史 旧量子论 紧跟在汉斯·克拉默斯(Hans Kramers)的开拓工作之后,1925年6月,维尔纳·海森堡发表论文《运动与机械关系的量子理论重新诠释》(Quantum-Theoretical Re-interpretation of Kinematic and Mechanical Relations),创立了矩阵力学。旧量子论渐渐式微,现代量子力学正式开启。矩阵力学大胆地假设,关于运动的经典概念不适用于量子层级。在原子里的电子并不是运动于明确的轨道,而是模糊不清,无法观察到的轨域;其对于时间的傅里叶变换只涉及从量子跃迁中观察到的离散频率。‎ 海森堡在论文里提出,只有在实验里能够观察到的物理量才具有物理意义,才可以用理论描述其物理行为,其它都是无稽之谈。因此,他避开任何涉及粒子运动轨道的详细计算,例如,粒子随着时间而改变的确切运动位置。因为,这运动轨道是无法直接观察到的。替代地,他专注于研究电子跃迁时,所发射的光的离散频率和强度。他计算出代表位置与动量的无限矩阵。这些矩阵能够正确地预测电子跃迁所发射出光波的强度。‎ 同年6月,海森堡的上司马克斯·玻恩,在阅读了海森堡交给他发表的论文后,发觉了位置与动量无限矩阵有一个很显著的关系──它们不互相对易。这关系称为正则对易关系,以方程表示。在那时,物理学者还没能清楚地了解这重要的结果,他们无法给予合理的诠释。‎ 质疑 小泽不等式及其验证 随着科技进步,20世纪80年代以来,有声音开始指出该定律并不是万能的。日本名古屋大学教授小泽正直在2020‎ 年提出“小泽不等式”,认为“测不准原理”可能有其缺陷所在。为此,其科研团队对与构成原子的中子“自转”倾向相关的两个值进行了精密测量,并成功测出超过所谓“极限”的两个值的精度,使得小泽不等式获得成立,同时也证明了与“测不准原理”之间存在矛盾。‎ 日本名古屋大学教授小泽正直和奥地利维也纳工科大学副教授长谷川祐司的科研团队通过实验发现,大约在80年前提出的用来解释微观世界中量子力学的基本定律“测不准原理”有其缺陷所在。该发现在全世界尚属首次。这个发现成果被称作是应面向高速密码通信技术应用和教科书改换的形势所迫,于2020年1月15日在英国科学杂志《自然物理学》(电子版)上发表。‎ 弱测量技术 多伦多大学(the University of Toronto)量子光学研究小组的李·罗泽马(Lee Rozema)设计了一种测量物理性质的仪器,其研究成果发表在2020年9月7日当周的《物理评论通讯》(Physical Review Letters)周刊上。‎ 为了达到这个目标,需要在光子进入仪器前进行测量,但是这个过程也会造成干扰。为了解决这个问题,罗泽马及其同事使用一种弱测量技术(weak measurement),让所测对象受到的干扰微乎其微,每个光子进入仪器前,研究人员对其弱测量,然后再用仪器测量,之后对比两个结果。发现造成的干扰不像海森贝格原理中推断的那么大。‎ 这一发现是对海森贝格理论的挑战。2020年,澳大利亚格里菲斯大学(Griffith University)科学家伦德(A.P. Lund)和怀斯曼(Howard Wiseman)发现弱测量可以应用于测量量子体系,然而还需要一个微型量子计算机,但这种计算机很难生产出来。罗泽马的实验包括应用弱测量和通过“簇态量子计算”技术简化量子计算过程,把这两者结合,找到了在实验室测试伦德和怀斯曼观点的方法。‎ 现代不等式 海森堡与玻尔共同讨论问题 ‎1926年,海森堡任聘为哥本哈根大学尼尔斯·玻尔研究所的讲师,帮尼尔斯·玻尔做研究。在那里,海森堡表述出不确定性原理,从而为后来知名为哥本哈根诠释奠定了的坚固的基础。海森堡证明,对易关系可以推导出不确定性,或者,使用玻尔的术语,互补性:不能同时观测任意两个不对易的变量;更准确地知道其中一个变量,则必定更不准确地知道另外一个变量。‎ 在他著名的1927年论文里, 海森堡写出公式。‎ 这公式给出了任何位置测量所造成的最小无法避免的动量不确定值。虽然他提到,这公式可以从对易关系导引出来,他并没有写出相关数学理论,也没有给予和确切的定义。他只给出了几个案例(高斯波包)的合理估算。 在海森堡的芝加哥讲义里,他又进一步改善了这关系式。‎ ‎1927年厄尔·肯纳德(Earl Kennard)首先证明了现代不等式。‎ ‎1929年,霍华德·罗伯森(Howard Robertson)给出怎样从对易关系求出不确定关系式。‎ 名称 有很久一段时间,不确定性原理被称为“测不准原理”,但实际而言,对于类波系统内秉的性质,不确定性原理与测量准确不准确并没有直接关系(请查阅本条目稍前关于观察者效应的内容),因此,该译名并未正确表达出这原理的内涵。另外,英语称此原理为“Uncertainty Principle”,直译为“不确定性原理”,并没有“测不准原理”这种说法,其他语言与英语的情况类似,除中文外,并无“测不准原理”一词。现今,在中国大陆的教科书中,该原理的正式译名也已改为“不确定性关系”(Uncertainty Relation)。‎