- 228.00 KB
- 2021-06-09 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
3.2.2 函数模型的应用举例
整体设计
教学分析
函数基本模型的应用是本章的重点内容之一.教科书用4个例题作示范,并配备了较多的实际问题让学生进行练习.在4个例题中,分别介绍了分段函数、对数函数、二次函数的应用.
教科书中还渗透了函数拟合的基本思想.通过本节学习让学生进一步熟练函数基本模型的应用,提高学生解决实际问题的能力.
三维目标
1.培养学生由实际问题转化为数学问题的建模能力,即根据实际问题进行信息综合列出函数解析式.
2.会利用函数图象性质对函数解析式进行处理得出数学结论,并根据数学结论解决实际问题.
3.通过学习函数基本模型的应用,体会实践与理论的关系,初步向学生渗透理论与实践的辩证关系.
重点难点
根据实际问题分析建立数学模型和根据实际问题拟合判断数学模型,并根据数学模型解决实际问题.
课时安排
2课时
教学过程
第1课时 函数模型的应用实例
导入新课
思路1.(情景导入)
在课本第三章的章头图中,有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚人头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.
与之相应的图中话道出了其中的意蕴:对于一个种群的数量,如果在理想状态(如没有天敌、食物充足等)下,那么它将呈指数增长;但在自然状态下,种群数量一般符合对数增长模型.
上一节我们学习了不同的函数模型的增长差异,这一节我们进一步讨论不同函数模型的应用.
思路2.(直接导入)
上一节我们学习了不同的函数模型的增长差异,这一节我们进一步讨论不同函数模型的应用.
推进新课
新知探究
提出问题
①我市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.
设在甲家租一张球台开展活动x小时的收费为f(x)元(15≤x≤40),在乙家租一张球台开展活动x小时的收费为g(x)元(15≤x≤40),试求f(x)和g(x).
②A、B两城相距100 km,在两地之间距A城x km处D地建一核电站给A、B
两城供电,为保证城市安全.核电站距城市距离不得少于10 km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A城供电量为20亿度/月,B城为10亿度/月.
把月供电总费用y表示成x的函数,并求定义域.
③分析以上实例属于那种函数模型.
讨论结果:①f(x)=5x(15≤x≤40).
g(x)=
②y=5x2+(100—x)2(10≤x≤90);
③分别属于一次函数模型、二次函数模型、分段函数模型.
应用示例
思路1
例1一辆汽车在某段路程中的行驶速率与时间的关系如图所示.
(1)求图3-2-2-1中阴影部分的面积,并说明所求面积的实际含义;
(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数解析式,并作出相应的图象.
图3-2-2-1
活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:
图中横轴表示时间,纵轴表示速度,面积为路程;由于每个时间段速度不断变化,汽车里程表读数s km与时间t h的函数为分段函数.
解:(1)阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360.
阴影部分的面积表示汽车在这5小时内行驶的路程为360 km.
(2)根据图,有s=
这个函数的图象如图3-2-2-2所示.
图3-2-2-2
变式训练
2007深圳高三模拟,理19电信局为了满足客户不同需要,设有A、B两种优惠方案,这两种方案应付话费(元)与通话时间(分钟)之间关系如下图(图3-2-2-3)所示(其中MN∥CD).
(1)分别求出方案A、B应付话费(元)与通话时间x(分钟)的函数表达式f(x)和g(x);
(2)假如你是一位电信局推销人员,你是如何帮助客户选择A、B两种优惠方案?并说明理由.
图3-2-2-3
解:(1)先列出两种优惠方案所对应的函数解析式:
f(x)=g(x)=
(2)当f(x)=g(x)时,x-10=50,
∴x=200.∴当客户通话时间为200分钟时,两种方案均可;
当客户通话时间为0≤x<200分钟,g(x)>f(x),故选择方案A;
当客户通话时间为x>200分钟时,g(x)