- 78.00 KB
- 2021-06-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
一、选择题
1.集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是( )
A. B. C. D.
解析 从A,B中任意取一个数,共有C·C=6种情形,两数和等于4的情形只有(2,2),(3,1)两种,
∴p==.
答案 C
2.设m,n∈{0,1,2,3,4},向量a=(-1,-2),b=(m,n),则a∥b的概率为( )
A. B. C. D.
解析 a∥b⇒-2m=-n⇒2m=n,所以或或因此概率为=.
答案 B
3.某同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在平面直角坐标系xOy中,以(x,y)为坐标的点在直线2x-y=1上的概率为( )
A. B. C. D.
解析 先后投掷一枚骰子两次,共有6×6=36种结果,满足题意的结果有3种,即(1,1),(2,3),(3,5),所以所求概率为=.
答案 A
4.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( )
A. B. C. D.
解析 分别用A,B,C表示齐王的上、中、下等马,用a,b,c
表示田忌的上、中、下等马,现从双方的马匹中随机选一匹进行一场比赛有Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc共9场比赛,其中田忌马获胜的有Ba,Ca,Cb共3场比赛,所以田忌马获胜的概率为.
答案 A
5.(2019·北京朝阳区调研)将一个骰子连续掷3次,它落地时向上的点数依次成等差数列的概率为( )
A. B. C. D.
解析 一个骰子连续掷3次,落地时向上的点数可能出现的组合数为63=216(种).落地时向上的点数依次成等差数列,当向上点数若不同,则为(1,2,3),(1,3,5),(2,3,4),(2,4,6),(3,4,5),(4,5,6),共有2×6=12种情况;当向上点数相同,共有6种情况.故落地时向上的点数依次成等差数列的概率为=.
答案 A
二、填空题
6.(2019·天津和平区模拟)小明忘记了微信登录密码的后两位,只记得最后一位是字母A,a,B,b中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是________.
解析 小明输入密码后两位的所有情况有C·C=12种,而能成功登陆的密码只有一种,故小明输入一次密码能够成功登陆的概率是.
答案
7.若m是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆+=1的焦距为整数的概率为________.
解析 m是集合{1,3,5,7,9,11}中任意选取的一个元素,∴基本事件总数为6,又满足椭圆+=1的焦距为整数的m的取值有1,3,11,共有3个,∴椭圆+=1的焦距为整数的概率p==.
答案
8.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为________.
解析 甲同学从四种水果中选两种,选法种数有C,乙同学的选法种数为C,则两同学的选法种数为C·C,两同学各自所选水果相同的选法种数为C,由古典概型概率计算公式可得,甲、乙两同学各自所选的两种水果相同的概率为p==.
答案
三、解答题
9.甲、乙两组各四名同学的植树棵数如下,甲:9,9,11,11,乙:X,8,9,10,其中有一个数据模糊,无法确认,在图中以X表示.
(1)如果X=8,求乙组同学植树棵数的平均数和方差;
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.
解 (1)当X=8时,乙组四名同学的植树棵数分别是8,8,9,10,故==,s2=×[×2++]=.
(2)当X=9时,记甲组四名同学分别为A1,A2,A3,A4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B1,B2,B3,B4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A1,B1},{A1,B2},{A1,B3},{A1,B4},{A2,B1},{A2,B2},{A2,B3},{A2,B4},{A3,B1},{A3,B2},{A3,B3},{A3,B4},{A4,B1},{A4,B2},{A4,B3},{A4,B4},共16个.设“选出的两名同学的植树总棵数为19”为事件C,则事件C中包含的基本事件为{A1,B4},{A2,B4},{A3,B2},{A4,B2},共4个.故P(C)==.
10.某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.
由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.
(1)求A中学至少有1名学生入选代表队的概率;
(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,求参赛女生人数不少于2人的概率.
解 (1)由题意,参加集训的男、女生各有6名.参赛学生全从B中学抽取(等价于A中学没有学生入选代表队)的概率为=,因此,A中学至少有1名学生入选代表队的概率为1-=.
(2)设“参赛的4人中女生不少于2人”为事件A,记“参赛女生有2人”为事件B,“参赛女生有3人”为事件C.
则P(B)==,P(C)==.
由互斥事件的概率加法公式,
得P(A)=P(B)+P(C)=+=,
故所求事件的概率为.
能力提升题组
(建议用时:20分钟)
11.已知函数f(x)=ax2+bx+1,其中a∈{2,4},b∈{1,3},从f(x)中随机抽取1个,则它在(-∞,-1]上是减函数的概率为( )
A. B. C. D.0
解析 f(x)共有四种等可能基本事件即(a,b)取(2,1),(2,3),(4,1),(4,3),记事件A为f(x)在(-∞,-1]上是减函数,由条件知f(x)是开口向上的函数,对称轴是x=-≥-1,事件A共有三种(2,1),(4,1),(4,3)等可能基本事件,所以P(A)=.
答案 B
12.甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领取的钱数不少于其他任何人)的概率是( )
A. B. C. D.
解析 6元分成整数元有3份, 可能性有(1,1,4),(1,2,3),(2,2,2),第一个分法有3种,第二个分法有6种,第三个分法有1种,其中符合“最佳手气”的有4种,故概率为=.
答案 D
13.(2018·江西重点中学盟校联考)从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换后,甲在乙左边的概率是__________.
解析 从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换,基本事件总数为n=C·C=9,从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,第一次调换后,对调后的位置关系有三种:甲丙乙、乙甲丙、丙乙甲,第二次调换后甲在乙的左边对应的关系有:丙甲乙、甲乙丙;丙甲乙、甲乙丙;甲丙乙、丙甲乙,
∴经过两次这样的调换后,甲在乙的左边包含的基本事件个数m=6,
∴经过这样的调换后,甲在乙左边的概率:p===.
答案
14.(2019·日照一模)某快递公司收取快递费用的标准如下:质量不超过1 kg的包裹收费10元;质量超过1 kg的包裹,除1 kg收费10元之外,超过1 kg的部分,每1 kg(不足1 kg,按1 kg计算)需再收5元.
该公司对近60天, 每天揽件数量统计如下表:
包裹件数范围
0~100
101~200
201~300
301~400
401~500
包裹件数(近似处理)
50
150
250
350
450
天数
6
6
30
12
6
(1)某人打算将A(0.3 kg),B(1.8 kg),C(1.5 kg)三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过30元的概率;
(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.
前台工作人员每人每天揽件不超过150件,工资100元,目前前台有工作人员3人,那么公司将前台工作人员裁员1人对提高公司利润是否更有利?
解 (1)由题意,寄出方式有以下三种可能:
情况
第一个包裹
第二个包裹
甲支付的总快递费
礼物
质量(kg)
快递费(元)
礼物
质量(kg)
快递费(元)
1
A
0.3
10
B,C
3.3
25
35
2
B
1.8
15
A,C
1.8
15
30
3
C
1.5
15
A,B
2.1
20
35
所有3种可能中,有1种可能快递费未超过30元,根据古典概型概率计算公式,所求概率为.
(2)由题目中的天数得出频率,如下:
包裹件数范围
0~100
101~200
201~300
301~400
401~500
包裹件数(近似处理)
50
150
250
350
450
天数
6
6
30
12
6
频率
0.1
0.1
0.5
0.2
0.1
若不裁员,则每天可揽件的上限为450件,公司每日揽件数情况如下:
包裹件数(近似处理)
50
150
250
350
450
实际揽件数
50
150
250
350
450
频率
0.1
0.1
0.5
0.2
0.1
平均揽件数
50×0.1+150×0.1+250×0.5+350×0.2+450×0.1=260
故公司每日利润为260×5-3×100=1 000(元);
若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:
包裹件数(近似处理)
50
150
250
350
450
实际揽件数
50
150
250
300
300
频率
0.1
0.1
0.5
0.2
0.1
平均揽件数
50×0.1+150×0.1+250×0.5+300×0.2+300×0.1=235
故公司每日利润为235×5-2×100=975(元).
综上,公司将前台工作人员裁员1人对提高公司利润不利.
新高考创新预测
15.(多填题)在政治、历史、地理、物理、化学、生物、技术7门学科中任选3门.若甲同学在物理、化学中至少选一门,则甲的不同选法种数为________,乙、丙两名同学都不选物理的概率是________.
解析 由于甲在物理、化学中至少选一门学科,即不同选法种数为C-C=25;乙、丙两名同学都不选物理的概率p==.
答案 25