- 2.88 MB
- 2021-06-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。
课时素养评价
十一 基本不等式的应用
(15分钟 35分)
1.已知a>b>0,全集为R,集合M=xbb>0结合基本不等式可得,a>>>b,故P=M∩(RN).
2.某工厂第一年产量为A,第二年的增长率为a,第三年的增长率为b,这两年的平均增长率为x,则 ( )
A.x= B.x≤
C.x> D.x≥
【解析】选B.由条件知A(1+a)(1+b)=A(1+x)2,
所以(1+x)2=(1+a)(1+b)≤,
所以1+x≤1+,故x≤.
3.已知a>0,b>0,ab=1,且m=b+,n=a+,则m+n的最小值是 ( )
A.3 B.4 C.5 D.6
【解题指南】利用“1”的代换解题.
【解析】选B.因为ab=1,所以m=b+=2b,n=a+=2a,所以m+n=2(a+b)≥4=4.
当且仅当a=b=1时,等号成立.
【补偿训练】
若实数a,b满足+=,则ab的最小值为 ( )
A. B.2 C.2 D.4
【解析】选C.由题意知a>0,b>0,
则+≥2=,
当且仅当=,即b=2a时等号成立.
所以≥,即ab≥2.
4.周长为+1的直角三角形面积的最大值为 .
【解析】设直角三角形的两条直角边边长分别为a,b,
则+1=a+b+≥2+,
解得ab≤,当且仅当a=b=时取等号,
所以直角三角形面积S≤,即S的最大值为.
答案:
5.某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x= .
【解析】总运费与总存储费用之和f(x)=4x+×4=4x+≥2=160,当且仅当4x=,即x=20时取等号.
答案:20
6.设a,b,c均为正数,且a+b+c=1.
证明:
(1)ab+bc+ac≤.
(2)++≥1.
【证明】(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,得a2+b2+c2≥ab+bc+ca.
由题设得(a+b+c)2=1,
即a2+b2+c2+2ab+2bc+2ca=1.
所以3(ab+bc+ca)≤1,即ab+bc+ca≤.
(2)因为+b≥2a,+c≥2b,+a≥2c.
故+++(a+b+c)≥2(a+b+c),
即++≥a+b+c.所以++≥1.
(30分钟 60分)
一、单选题(每小题5分,共20分)
1.若x,y为正数,且+2y=3,则的最大值为( )
A. B. C. D.
【解析】选D.由x,y为正数得3=+2y≥2,所以≤,≤,
当且仅当x=,y=时等号成立.
2.将一根铁丝切割成三段做一个面积为2 m2,形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是 ( )
A.6.5 m B.6.8 m C.7 m D.7.2 m
【解析】选C.设两直角边分别为a,b,直角三角形框架的周长为l,则ab=2,
所以ab=4,l=a+b+≥2+=4+2≈6.828(m).
因为要求够用且浪费最少,故应选择7 m长的铁丝.
3.已知a>0,b>0,若不等式+≥恒成立,则m的最大值为 ( )
A.9 B.12 C.18 D.24
【解析】选B.由+≥
得m≤(a+3b)=++6,又++6≥2+6=12,当且仅当=,即a=3b时等号成立.所以m≤12,所以m的最大值为12.
【补偿训练】
设a>0,b>0,且不等式++≥0恒成立,则实数k的最小值等于 ( )
A.0 B.4 C.-4 D.-2
【解析】选C.由++≥0,得k≥,而=++2≥4,
当且仅当a=b时,等号成立,
所以-≤-4,
因此要使k≥-恒成立,应有k≥-4,
即实数k的最小值等于-4.
4.若x,y为正数,则+的最小值是 ( )
A.3 B. C.4 D.
【解析】选C.+=++≥4,
当且仅当即x=y=时等号成立.
【误区警示】同一题目中多次用基本不等式,必须保证每次用时等号成立的条件相同.
二、多选题(每小题5分,共10分,全部选对的得5分,选对但不全的得3分,有选错的得0分)
5.已知a>0,b>0,a+b=1,对于代数式1+1+,下列说法正确的是 ( )
A.最小值为9
B.最大值是9
C.当a=b=时取得最小值
D.当a=b=时取得最大值
【解析】选AC.=1+1+=·
=5+2≥5+4=9.当且仅当a=b=时,取等号.
6.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y=x2-200x+80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.以下判断正确的是 ( )
A.该单位每月处理量为400吨时,才能使每吨的平均处理成本最低
B.该单位每月最低可获利20 000元
C.该单位每月不获利,也不亏损
D.每月需要国家至少补贴40 000元才能使该单位不亏损
【解析】选AD.由题意可知,二氧化碳每吨的平均处理成本为=x+-200
≥2-200=200,当且仅当x=,即x=400时等号成立,
故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.
设该单位每月获利为S元,
则S=100x-y=100x-
=-x2+300x-80 000=-(x-300)2-35 000,
因为x∈[400,600],
所以S∈[-80 000,-40 000].故该单位每月不获利,需要国家每月至少补贴
40 000元才能不亏损.
三、填空题(每小题5分,共10分)
7.(2020·江苏高考)已知5x2y2+y4=1(x,y∈R),则x2+y2的最小值是 .
【解析】因为5x2y2+y4=1(x,y∈R),所以y≠0,
所以x2=,
则x2+y2=+y2≥2=,
当且仅当=y2时,即y2=,
x2=时,x2+y2的最小值是.
答案:
【补偿训练】
设x,y均为正数,且xy+x-y-10=0,则x+y的最小值是 .
【解析】由xy+x-y-10=0,得x==+1,
所以x+y=+1+y≥2 =6,
当且仅当=1+y,即y=2时,等号成立.
答案:6
8.为净化水质,向一个游泳池加入某种化学药品,加药后池水中该药品的浓度C(单位:mg·L-1)随时间t(单位:h)的变化关系为C=,则经过 h后池水中该药品的浓度达到最大.
【解析】C==.
因为t>0,所以t+≥2 =4当且仅当t=,即t=2时,等号成立.
所以C=≤=5,即当t=2时,C取得最大值.
答案:2
四、解答题(每小题10分,共20分)
9.已知x>0,y>0,且2x+8y-xy=0,求
(1)xy的最小值.
(2)x+y的最小值.
【解析】(1)由2x+8y-xy=0,得+=1,
又x>0,y>0,则1=+≥2 =,得xy≥64,
当且仅当x=16,y=4时,等号成立.
所以xy的最小值为64.
(2)由2x+8y-xy=0,得+=1,
则x+y=·(x+y)=10++≥
10+2 =18.
当且仅当x=12且y=6时等号成立,
所以x+y的最小值为18.
10.运货卡车以每小时x千米的速度匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元.
(1)求这次行车总费用y关于x的表达式.
(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.
【解析】(1)设所用时间为t=(h),
y=×2×+14×,x∈[50,100].
所以,这次行车总费用y关于x的表达式是
y=+x,x∈[50,100].
(或y=+x,x∈[50,100]).
(2)y=+x≥26,
当且仅当=x,
即x=18时,等号成立.
故当x=18时,这次行车的总费用最低,最低费用的值为26元.
1.已知正实数a,b,c满足a2-2ab+9b2-c=0,则当取得最大值时,+-的最大值为 .
【解析】正实数a,b,c满足a2-2ab+9b2-c=0,得==
=≤,
当且仅当=,即a=3b时,取最大值.
又因为a2-2ab+9b2-c=0,所以此时c=12b2,
所以+-=+-
=≤=1.
当且仅当a=3,b=1时,等号成立.
故最大值为1.
答案:1
【补偿训练】
设a>b>c>0,则2a2++-10ac+25c2的最小值是 ( )
A.2 B.4 C.2 D.5
【解析】选B.2a2++-10ac+25c2
=(a-5c)2+a2-ab+ab++
=(a-5c)2+ab++a(a-b)+≥0+2+2=4,
当且仅当a-5c=0,ab=1,a(a-b)=1时,等号成立,如取a=,b=,c=时满足条件.
2.我们学习了二元基本不等式:设a>0,b>0,≥,当且仅当a=b时,等号成立,利用基本不等式可以证明不等式,也可以利用“和定积最大,积定和最小”求最值.
(1)对于三元基本不等式请猜想:设a>0,b>0,c>0,≥ ,当且仅当a=b=c时,等号成立(把横线补全).
(2)利用(1)猜想的三元基本不等式证明:
设a>0,b>0,c>0,求证:(a2+b2+c2)(a+b+c)≥9abc.
(3)利用(1)猜想的三元基本不等式求最值:
设a>0,b>0,c>0,a+b+c=1,求(1-a)(1-b)(1-c)的最大值.
【解析】(1)对于三元基本不等式猜想:设a>0,b>0,c>0,≥,当且仅当a=b=c时,等号成立.
答案:
(2)因为a>0,b>0,c>0,
又因为a+b+c≥3>0,a2+b2+c2≥
3>0,
所以(a2+b2+c2)(a+b+c)≥9=9abc,
当且仅当a=b=c时,等号成立.
即(a2+b2+c2)(a+b+c)≥9abc,
(3)因为a>0,b>0,c>0,≥,
所以abc≤,
又因为a+b+c=1,
0<1-a<1,0<1-b<1,0<1-c<1,
所以(1-a)(1-b)(1-c)
≤=,
当且仅当a=b=c=时,等号成立.
所以(1-a)(1-b)(1-c)的最大值为.
关闭Word文档返回原板块