- 150.00 KB
- 2021-06-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时跟踪检测(二十八) 平面向量的概念及其线性运算
一、题点全面练
1.已知O,A,B是同一平面内的三个点,直线AB上有一点C满足2+=0,则=( )
A.2- B.-+2
C.- D.-+
解析:选A 依题意,得=+=+2=+2(-),所以=2-,故选A.
2.(2019·石家庄质检)在△ABC中,点D在边AB上,且=,设=a,=b,则=( )
A.a+b B.a+b
C.a+b D.a+b
解析:选B ∵=,∴=,∴=+=+=+(-)=+=a+b,故选B.
3.(2018·大同一模)在平行四边形ABCD中,点E为CD的中点,BE与AC的交点为F,设=a,=b,则向量=( )
A.a+b B.-a-b
C.-a+b D.a-b
解析:选C 如图,因为点E为CD的中点,CD∥AB,所以==2,所以==(+)==-a+b,故选C.
4.(2019·丹东五校协作体联考)P是△ABC所在平面上的一点,满足++=2,若S△ABC=6,则△PAB的面积为( )
A.2 B.3
C.4 D.8
解析:选A ∵++=2=2(-),∴3=-=,∴∥,且方向相同,∴===3,
∴S△PAB==2.
5.(2018·安庆二模)在△ABC中,点D是边BC上任意一点,M是线段AD的中点,若存在实数λ和μ,使得=λ+μ,则λ+μ=( )
A. B.-
C.2 D.-2
解析:选B 如图,因为点D在边BC上,所以存在t∈R,使得=t=t(-).
因为M是线段AD的中点,所以=(+)=(-+t-t)=-(t+1)·+t.
又=λ+μ,所以λ=-(t+1),μ=t,
所以λ+μ=-.故选B.
6.已知O为△ABC内一点,且2=+,=t,若B,O,D三点共线,则t的值为________.
解析:设线段BC的中点为M,则+=2.
因为2=+,所以=,
则==(+)==+.
由B,O,D三点共线,得+=1,解得t=.
答案:
7.在△ABC中,∠A=60°,∠A的平分线交BC于点D,若AB=4,且=+λ (λ∈R),则AD的长为________.
解析:因为B,D,C三点共线,所以+λ=1,解得λ=,如图,过点D分别作AC,AB的平行线交AB,AC于点M,N,则=,=,∵在△ABC中,∠A=60°,∠A的平分线交BC于点D,∴四边形ANDM为菱形,∵AB=4,∴AN=AM=3,AD=3.
答案:3
8.在△ABC中,点D在线段BC的延长线上,且=3,点O在线段CD上(与点C,D不重合),若=x+(1-x),则x的取值范围是________.
解析:设=y,
∵=+=+y=+y(-)
=-y+(1+y).
∵=3,点O在线段CD上(与点C,D不重合),
∴y∈,∵=x+(1-x),
∴x=-y,∴x∈.
答案:
9.在△ABC中,D,E分别为BC,AC边上的中点,G为BE上一点,且GB=2GE,设=a,=b,试用a,b表示,.
解:=(+)=a+b.
=+BG―→=+=+(+)
=+(-)=+
=a+b.
10.已知a,b不共线,=a,=b,=c,=d,=e,设t∈R,如果3a=c,2b=d,e=t(a+b),是否存在实数t使C,D,E三点在一条直线上?若存在,求出实数t的值,若不存在,请说明理由.
解:由题设知,=d-c=2b-3a,=e-c=(t-3)a+tb,C,D,E三点在一条直线上的充要条件是存在实数k,使得=k,即(t-3)a+tb=-3ka+2kb,
整理得(t-3+3k)a=(2k-t)b.
因为a,b不共线,所以有解得t=.
故存在实数t=使C,D,E三点在一条直线上.
二、专项培优练
(一)易错专练——不丢怨枉分
1.设a,b都是非零向量,下列四个条件中,使=成立的充分条件是( )
A.a=-b B.a∥b
C.a=2b D.a∥b且|a|=|b|
解析:选C 因为向量的方向与向量a相同,向量的方向与向量b相同,且=,所以向量a与向量b方向相同,故可排除选项A、B、D.
当a=2b时,==,故a=2b是=成立的充分条件.
2.已知O,A,B三点不共线,P为该平面内一点,且=+,则( )
A.点P在线段AB上
B.点P在线段AB的延长线上
C.点P在线段AB的反向延长线上
D.点P在射线AB上
解析:选D 由=+,得-=,∴=·,∴点P在射线AB上,故选D.
3.已知向量a,b不共线,且c=λa+b,d=a+(2λ-1)b,若c与d反向共线,则实数λ的值为( )
A.1 B.-
C.1或- D.-1或-
解析:选B 由于c与d反向共线,则存在实数k使c=kd(k<0),于是λa+b=k.整理得λa+b=ka+(2λk-k)b.由于a,b不共线,所以有整理得2λ2-λ-1=0,解得
λ=1或λ=-.又因为k<0,所以λ<0,故λ=-.
(二)素养专练——学会更学通
4.[直观想象]如图所示,已知AB是圆O的直径,点C,D是半圆弧的三等分点,=a,=b,则=( )
A.a-b B.a-b
C.a+b D.a+b
解析:选D 连接CD(图略),由点C,D是半圆弧的三等分点,得CD∥AB且==a,所以=+=b+a.
5.[逻辑推理]如图,在△ABC中,点D在线段BC上,且满足BD=DC,过点D的直线分别交直线AB,AC于不同的两点M,N,若=m,=n,则( )
A.m+n是定值,定值为2
B.2m+n是定值,定值为3
C.+是定值,定值为2
D.+是定值,定值为3
解析:选D 因为M,D,N三点共线,所以=λ+(1-λ).又=m,=n,所以=λm+(1-λ)n.又=,所以-=-,所以=+.比较系数知λm=,(1-λ)n=,所以+=3,故选D.
6.[数学建模]在如图所示的方格纸中,向量a,b,c的起点和终点均在格点(小正方形顶点)上,若c与xa+yb(x,y为非零实数)共线,则的值为________.
解析:设e1,e2分别为水平方向(向右)与竖直方向(向上)的单位向量,则向量c=e1-2e2,a=2e1+e2,b=-2e1-2e2,由c与xa+yb共线,得c=λ(xa+yb),所以e1-2e2=2λ(x-y)e1+λ(x-2y)e2,所以所以则的值为.
答案:
7.[数学运算]经过△OAB重心G的直线与OA,OB分别交于点P,Q,设=m,=n,m,n∈R,求+的值.
解:设=a,=b,则=(a+b),
=-=nb-ma,
=-=(a+b)-ma=a+b.
由P,G,Q共线得,存在实数λ使得=λ,
即nb-ma=λa+λb,
则消去λ,得+=3.
8.[逻辑推理]已知O,A,B是不共线的三点,且=m+n(m,n∈R).
(1)若m+n=1,求证:A,P,B三点共线;
(2)若A,P,B三点共线,求证:m+n=1.
证明:(1)若m+n=1,
则=m+(1-m)
=+m(-),
∴-=m(-),
即=m,∴与共线.
又∵与有公共点B,
∴A,P,B三点共线.
(2)若A,P,B三点共线,
则存在实数λ,使=λ,
∴-=λ(-).
又=m+n.
故有m+(n-1)=λ-λ,
即(m-λ)+(n+λ-1)=0.
∵O,A,B不共线,∴,不共线,
∴∴m+n=1.