- 222.89 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高中数学常见题型解法归纳及反馈检测
第1讲 函数的定义域常见求法
【知识要点】
一、函数的定义域的定义
函数的定义域是指使函数有意义的自变量的取值范围.
二、求函数的定义域的主要依据
1、分式的分母不能为零.
2、偶次方根的被开方数的被开方数必须大于等于零,即中奇次方根的被开方数取全体实数,即中,.
3、指数函数的底数必须满足.
4、对数函数的真数必须大于零,底数必须满足.
5、零次幂的底数不能为零,即中.
6、正切函数的定义域是.
7、复合函数的定义域的求法
(1)已知原函数的定义域为,求复合函数的定义域:只需解不等式,不等式的解集即为所求函数的定义域.
(2)已知复合函数的定义域为,求原函数的定义域:只需根据求出函数的值域,即得原函数的定义域.
8、求函数的定义域
一般先分别求函数和函数的定义域和,再求,则就是所求函数的定义域.
9、求实际问题中函数的定义域
不仅要考虑解析式有意义,还要保证满足实际意义.
第 5 页
高中数学常见题型解法归纳及反馈检测
三、函数的定义域的表示
函数的定义域必须用集合表示,不能用不等式表示.函数的定义域也可以用区间表示,因为区间实际上是集合的一种特殊表示形式.
四、求函数的定义域常用的方法有直接法、求交法、抽象复合法和实际法.
五、函数的问题,必须遵循“定义域优先”的原则.
研究函数的问题,不管是具体的函数,还是抽象的函数,不管是简单的函数,还是复杂的函数,必须优先考虑函数的定义域.之所以要做到这一点,不仅是为了防止出现错误,有时还会为解题带来方便.
【方法讲评】
方法1 直接法
使用情景
函数的结构比较简单.
解题步骤
直接列出不等式解答,不等式的解集就是函数的定义域.
【例1】求函数的定义域.
【反馈检测1】求函数的定义域.
第 5 页
高中数学常见题型解法归纳及反馈检测
方法2 求交法
使用
情景
函数是由一些函数四则运算得到的,即函数的形式为型.
解题
步骤
一般先分别求函数和的定义域和,再求,就是函数的定义域.
【例2】求函数+的定义域.
【例3】求函数 的定义域.
【例4】求函数的定义域.
【反馈检测2】求函数的定义域.
第 5 页
高中数学常见题型解法归纳及反馈检测
方法3 抽象复合法
使用
情景
涉及到抽象复合函数.
解题
步骤
利用抽象复合函数的性质解答:
(1)已知原函数的定义域为,求复合函数的定义域:只需解不等式,不等式的解集即为所求函数的定义域.
(2)已知复合函数的定义域为,求原函数的定义域:只需根据求出函数的值域,即得原函数的定义域.
【例5】求下列函数的定义域:
(1)已知函数的定义域为,求函数的定义域;
(2)已知函数的定义域为,求函数的定义域;
(3)已知函数的定义域为,求函数的定义域.
【反馈检测3】已知函数的定义域为,求函数的定义域.
【反馈检测4】 若函数的定义域为,求函数的定义域.
第 5 页
高中数学常见题型解法归纳及反馈检测
方法4 实际法
使用
情景
数学问题是实际问题.
解题
步骤
先求函数的自变量的取值范围,再考虑自变量的实际限制条件,最后把前面两者的范围求交集,即得函数的定义域.
【例6】用长为的铁丝编成下部为矩形,上部为半圆形的框架(如图所示).若矩形底边长为,求此框架围成的面积与关于的函数解析式,并求出它的定义域.
【反馈检测5】 一个圆柱形容器的底部直径是,高是.现在以的速度向容器内注入某种溶液.求容器内溶液的高度关于注入溶液的时间的函数解析式,并写出函数的定义域和值域.
第 5 页