- 140.50 KB
- 2021-06-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
对应学生用书[练案79理]
高考大题规范解答系列(六)——概率与统计(理)
1.(2019·长沙模拟)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(1)求选出的3名同学是来自互不相同学院的概率;
(2)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望
[解析] (1)设“选出的3名同学是来自互不相同的学院”为事件A,则P(A)==.
所以选出的3名同学是来自互不相同学院的概率为.
(2)随机变量X的所有可能值为0,1,2,3.
则P(X=k)=(k=0,1,2,3).
所以P(X=0)==,P(X=1)==,
P(X=2)==,P(X=3)==.
所以随机变量X的分布列是
X
0
1
2
3
P
随机变量X的数学期望E(X)=0×+1×+2×+3×=.
2.(2019·湖南衡阳模拟)2018年2月25日,平昌冬奥会闭幕式上的“北京8分钟”惊艳了世界.某校为了让学生更好地了解奥运,了解新时代祖国的科技发展,在高二年级举办了一次知识问答比赛.比赛共设三关,第一、二关各有两个问题,两个问题全答对,可进入下一关;第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得分别为1,2,3分的积分奖励,高二(1)班对三关中每个问题回答正确的概率依次为,,,且每个问题回答正确与否相互独立.
(1)记A表示事件“高二(1)班未闯到第三关”,求P(A)的值;
(2)记X表示高二(1)班所获得的积分总数,求X的分布列和期望.
[解析] (1)令A1表示事件“高二(1)班闯过第一关”,A2表示事件“高二(1)班闯过第二关”,因为P(A1)=()2=,P(A2)=()2=,所以P(A)=P()+P(A1)=(1-)+×(1-)=
.
(2)随机变量X的取值为0,1,3,6,则P(X=0)=1-()2=,P(X=1)=()2×[1-()2]=,
P(X=3)=()2×()2×(×+×)=,
P(X=6)=()2×()2×(×+××+××)=,
故随机变量X的分布列为
X
0
1
3
6
P
所以E(X)=0×+1×+3×+6×=.
3.(2019·哈尔滨模拟)一个袋中有大小、质地完全相同的4个红球和1个白球,共5个球,现从中每次随机取出2个球,若取出的有白球必须把白球放回去,红球不放回,然后取第二次,第三次,…,直到把红球取完只剩下1个白球为止.用ξ表示终止时取球的次数.
(1)求ξ=2的概率;
(2)求ξ的分布列及数学期望.
[解析] (1)∵随机变量ξ=2表示从袋中随机取球2次且每次取的都是红球,∴P(ξ=2)=×=,即ξ=2的概率为.
(2)由题意知随机变量ξ的所有可能取值为2,3,4,由(1)知P(ξ=2)=.又P(ξ=4)=×××=,
∴P(ξ=3)==,
∴ξ的分布列为
ξ
2
3
4
P
Eξ=2×+3×+4×=.
4.(2019·昆明模拟)从某工厂的一个车间抽取某种产品50件,产品尺寸(单位:cm)落在各个小组的频数分布如下表:
数据
分组
[12.5,
15.5)
[15.5,
18.5)
[18.5,
21.5)
[21.5,
24.5)
[24.5,
27.5)
[27.5,
30.5)
[30.5,
33.5)
频数
3
8
9
12
10
5
3
(1)根据频数分布表,估计该产品尺寸落在[27.5,33.5)内的概率;
(2)求这50件产品尺寸的样本平均数(同一组中的数据用该组区间的中点值作代表);
(3)根据频数分布对应的直方图,可以认为这种产品尺寸z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2,经计算得s2=22.41.利用该正态分布,求P(z≥27.43).
附:①若随机变量z服从正态分布N(μ,σ2),则
P(μ-σ