- 224.50 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
§3.3.1 几何概型(二)
学习目标
(1)正确理解几何概型的概念;
(2)掌握几何概型的概率公式:
;
(3)会把相应的几何概型问题“角度”化、“面积”化、“体积”化.
重点难点
重点: 几何概型的概念及应用.
难点: 对几何概型的理解,将问题“角度”化、“面积”化、“体积”化.
学法指导
处理几何概型的主要思路是问题“长度”化、 “面积”化、“角度”化或“体积”化.
知识链接
几何概型的概率公式及其应用.
问题探究
【典型例题】 测量面积
一般的对于两个平面区域d,D,且,点落在区域D内每一点上都是等可能的,当D是个平面图形,记“点P落在区域d内” 为事件A,且事件A发生的概率只与d的面积有关时,一般有
例1 在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?
分析:石油在1万平方千米的海域大陆架的分布可以看作是等可能的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率。
练习:如图1是一个边长为1米的正方形木板,上面画着一个边界不规则的地图和板上被雨点打上的痕迹,则这个地图的面积为______平方米.
分析:雨点落在地图
上的概率问题是几何
概型,用面积比计算.
雨点打在地图和板上
是随机的,地图上有
9个雨点痕迹,板上
其他位置有18个雨点
痕迹,由此计算雨点落在地图上的概率,反过来推导地图面积.
例2
假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去上班的时间在早上7:00~8:00之间,如果把“你父亲在离开家之前能得到报纸”称为事件A,那么事件A是哪种类型的事件?
分析:送报人到达的时刻与父亲离开家的时刻是相互独立且是等可能的,所以应该引入两个变量来求解.
设送报人到达的时间为x(6.5≤x≤7.5),父亲离开家的时刻为y(7≤y≤8)事件A对应于不等关系“y≥x”.怎样建立x与y之间的关系才能解决这一不等关系呢?
自然我们就想到建立二维平面直角坐标系,将x与y之间的关系向点(x, y)转化,用点来解决(参看课本p138图3.3-2)。试验全部结果所构成的区域
,面积,事件A所构成的区域
,这是一个几何概型.
练习 从开区间中随机取两个数,求下列情况下的概率:
⑴ 两数之和小于;
⑵两数平方和小于.
【典型例题】 测量角度
对于两个平面区域d,D,且,当D为平面图形时,如果点P在整个平面图形上或线段长度上分布不是等可能的,注意观察角度是否等可能,若只与角度有关,则可以选择角度作为事件A所构成的区域.
例3 如图3,在平面直角坐标系内,射线落在角的终边上,任作一条射线,求射线落在内的概率.
分析:以为起点作射线是随机的,因而射线落在任何位置都是等可能的.落在内的概率只与的大小有关,符合几何概型的条件.
例4 在等腰中,
过直角顶点C在内部任做一条射线CM,与线段AB交于点M,求|AM|<|AC|的概率。
B
A
C
M
图
分析:因为过一点 例4图
作射线是均匀的,
所以基本事件“射线
CM落在
内任一处”是
等可能的,
且对应于角
.所
以使|AM|<|AC|的概率只与(点在线段AB上,且|AC|=|A|)的大小有关系,这符合几何概型的条件.
注 对比§3.3.1 几何概型(一)例3你会发现此类题目容易与长度型的几何概率问题混淆。解决本题的关键是找准基本事件的对应点,保证所给概率问题的等可能性,才能得出与原题对应的正确解答。
【典型例题】 测量体积
对于两个区域d,D,且,当D为三维空间时,当点P落在D每一处都是等可能的,记“点P落在区域d内” 为事件A,且事件A发生的概率只与d的体积有关时,可以选择体积作为事件A所构成的区域.
例5 在1升高产小麦种子中混入了一个带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少?
分析:病种子在这1升中的分布可以看作是随机的,取得的10毫克种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率。
目标检测
1.向面积为的内任投一点,则的面积小于的概率为( )
A. B. C. D.
2. (选做)A是圆上固定的一定点,在圆上其他位置任取一点B,连接A、B两点,得到弦AB,它的长度大于等于半径长度的概率为 ( )
A. B. C. D.
3.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是( )
A.0.5 B.0.4
C.0.004 D.不能确定
4.(选做)在矩形ABCD中,AB=5,BC=7.现在向该矩形内随机投一点P,则时的概率是 .
5.在棱长为1的正方体
中做四棱锥,使四棱锥的体积小于的概率是 .
6.在区间(0,1)中随机地取出两个数,这两个数的和小于的概率是 .
【能力提升】
7.如图,,,,在线段上任取一点,试求:(1)为钝角三角形的概率;
(2)为锐角三角形的概率.
8.(会面问题)甲乙两人相约上午8点到9点在某地会面,先到者等候另一人20分钟,过时离去,求甲乙两人能会面的概率.(见下图所示)
x-y=-20
x-y=20
20
20
练习
5
5
10
10
xy
O
9. (选做) 在长度为10的线段内任取两点将线段分为三段,求这三段可以构成三角形的概率.
纠错矫正
总结反思
x
相关文档
- 2019届二轮复习几何概型课件(65张)(全2021-06-1565页
- 高中数学必修3教案:1_1_1算法的概念2021-06-151页
- 高考数学专题复习练习第十一章 第2021-06-155页
- 高中数学必修3教案:1_2_2条件语句2021-06-154页
- 高中数学必修3教案:1_1_1算法的概念2021-06-153页
- 高考数学专题复习:《几何概型》同步2021-06-156页
- 高中数学必修3教案:2_1_1简单随机抽2021-06-123页
- 高考数学总复习课时规范练53几何概2021-06-127页
- 【数学】2020届一轮复习人教A版 2021-06-129页
- 高中数学必修3教案:1_1_2-1_1_3程序2021-06-121页