- 1.43 MB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
浙江省东阳中学2019-2020学年高一下学期期中考试试题
考生须知:
1.本卷共 4 页满分 150分,考试时间 120分钟;
2.在答题卷指定区域填写班级、姓名;所有答案必须写在答题纸上,写在试卷上无效.
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.在等差数列中,若,则 ( )
A.6 B.7 C.10 D.5
2.在中,,,分别是角,,所对的边,已知,,,则边长c= ( )
A. B. C. D.
3.已知向量,且,则实数的值为 ( )
A. B.1 C. D.
4.已知,,且,不为0,那么下列不等式一定成立的是 ( )
A. B. C. D.
5. 在中,,则的形状是 ( )
A.直角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形
6.已知,,且,则的最小值为 ( )
A.4 B.8 C. D.16
7.已知,,,则 ( )
A. B. C.2 D.3
8.已知关于的不等式在,上有解,则实数的取值范围是 ( )
A. B. C. D.
9.已知数列满足,,若,则 ( )A. B. C. D.
10.设,若不等式恒成立,则实数的取值范围是
( )
A., B., C., D.,
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.
11.已知向量,满足,,,则 ,在上的投影等于 .
12.在中,,,所对的边为,,,点为边上的中点,已知,,,则B= ; .
13.实数,满足不等式组,则的最小值是 ,
的最大值为 .
14.已知数列,,且,,,则 ;设,则的最小值为 .
15.已知,,,则与的夹角为 .
16.若不等式对任意的非零实数x,y恒成立,求实数a的取值范
围 .
17. 已知平面向量,,满足:,,,则的取
值范围是 .
三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.
18.在中,内角,,所对的边分别是,,,已知.
(1)求的值;
(2)若且的面积为9,求的值.
19.等比数列中,已知,.
(1)求数列的通项公式;
(2)若,分别为等差数列的第2项和第4项,试求数列的前项和.
20.如图,在中,,,为上一点,且满足,若的面积为.
(1)求的值;
(2)求的最小值.
21.在锐角中,角,,所对边分别为,,,已知,.
(1)求;
(2)求的取值范围.
22.已知等差数列的公差不为0,且,成等比数列,数列满足
.
(1) 求数列,的通项公式;
(2) 求证:.
参考答案
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.C 2.B 3.B 4.D 5.D 6.C 7. C 8. A 9. C 10.D
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.
11. 2 12. 13. 21 14.;
15. 16. 17.
三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.
18.(1).,,,
得.……………………………………………………………………….……7分
(2)由正弦定理得,则,的面积为9,
,即,即.…………………….…...…7分
19.(1),,公比,
该等比数列的通项公式;………………………………………………………...7分
(2)设等差数列的公差为,则,,
,,数列的前项和…………...8分
20.(1)设,,所以,解得,
由,且,,三点共线,
所以,解得;………………………………………………………………6分
(2)由(1)可知,
所以
因为,
所以,故,当且仅当,时取得等号,综上的最小值为. ……………………………………………………….9分
21.(1)在锐角中,,,可得,
由余弦定理可得:,
由为锐角,可得.……………………………………………………….…….6分
又,可得,,,
,,,,
即的取值范围是,.………………………………………….……..9分
22.(1)设等差数列的公差为d,则,解得,所以,又,所以:且时,,
………………………………………………………………………………………7分
(2)即证,因为,
因为,所以,
所以………………………………………………8分