- 95.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第3讲 二次函数与幂函数
[基础题组练]
1.如图是①y=xa;②y=xb;③y=xc在第一象限的图象,则a,b,c的大小关系为( )
A.cf(b),则( )
A.a2>b2 B.a2b
解析:选A.函数f(x)=x=(x2),令t=x2,易知y=t,在第一象限为增函数.
又f(a)>f(b),所以a2>b2.故选A.
3.若函数f(x)=x2+ax+b的图像与x轴的交点为(1,0)和(3,0),则函数f(x)( )
A.在(-∞,2)上是减少的,在[2,+∞)上是增加的
B.在(-∞,3)上是增加的
C.在[1,3]上是增加的
D.单调性不能确定
解析:选A.由已知可得该函数图像的对称轴为x=2,又二次项系数为1>0,所以f(x)在(-∞,2)上是减少的,在[2,+∞)上是增加的.
4.若a=,b=,c=,则a,b,c的大小关系是( )
A.ab=,因为y=是减函数,所以a=2x+m恒成立,求实数m的取值范围.
解:(1)由f(0)=1,得c=1,所以f(x)=ax2+bx+1.
又f(x+1)-f(x)=2x,
所以a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x,
即2ax+a+b=2x,
所以所以
因此,所求解析式为f(x)=x2-x+1.
(2)f(x)>2x+m等价于x2-x+1>2x+m,即x2-3x+1-m>0,要使此不等式在区间[-1,1]上恒成立,只需使函数g(x)=x2-3x+1-m在区间[-1,1]上的最小值大于0即可.
设g(x)=x2-3x+1-m,
则g(x)在区间[-1,1]上是减少的,
所以g(x)min=g(1)=-m-1,
由-m-1>0,得m<-1.
因此满足条件的实数m的取值范围是(-∞,-1).
[综合题组练]
1.(2020·陕西西安一模)已知函数f(x)=2ax2-ax+1(a<0),若x1f(x2)
C.f(x1)1).
(1)若函数f(x)的定义域和值域均为[1,a],求实数a的值;
(2)若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求实数a的取值范围.
解:(1)因为f(x)=x2-2ax+5在(-∞,a]上为减函数,
所以f(x)=x2-2ax+5(a>1)在[1,a]上是减少的,
即f(x)max=f(1)=a,f(x)min=f(a)=1,所以a=2或a=-2(舍去).即实数a的值为2.
(2)因为f(x)在(-∞,2]上是减函数,所以a≥2.
所以f(x)在[1,a]上是减少的,在[a,a+1]上是增加的,
又函数f(x)的对称轴为直线x=a,所以f(x)min=f(a)=5-a2,f(x)max=max{f(1),f(a+1)},
又f(1)-f(a+1)=6-2a-(6-a2)=a(a-2)≥0,
所以f(x)max=f(1)=6-2a.
因为对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,
所以f(x)max-f(x)min≤4,即6-2a-(5-a2)≤4,解得-1≤a≤3.又a≥2,所以2≤a≤3.即实数a的取值范围为2≤a≤3.
相关文档
- 高考数学一轮复习核心素养测评六十2021-06-163页
- 【数学】2021届一轮复习北师大版(理2021-06-169页
- 【数学】2018届一轮复习北师大版第2021-06-1614页
- 2021版高考数学一轮复习第十二章复2021-06-1629页
- 【数学】2019届一轮复习北师大版空2021-06-1618页
- 高中数学北师大版新教材必修一课时2021-06-164页
- 【数学】2019届一轮复习北师大版(文2021-06-1613页
- 【数学】2019届一轮复习北师大版(文2021-06-1620页
- 【数学】2018届一轮复习北师大版立2021-06-166页
- 【数学】2019届一轮复习北师大版 2021-06-1615页