• 335.33 KB
  • 2021-06-16 发布

云南省玉溪一中2020-2021高二数学(理)上学期第一次月考试题(Word版附答案)

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
玉溪一中2022届高二下学期第一次月考 理科数学试卷 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.‎ ‎1.已知集合,,则 A. B. C. D.‎ ‎2.已知向量,,若与共线,则实数的值为 A. B. C. D.‎ ‎3.各项为正数的等比数列中,与的等比中项为,则(  )‎ A. B. C. D.‎ ‎4.设,是两条不同的直线,,是两个不同平面,下列条件中能够推出的是 A.,, B.,,‎ C.,, D.,,‎ ‎5.函数的部分图象大致是 A. B. C. D.‎ ‎6.已知,直线,圆,则直线与圆相交的概率为 9‎ A. B. C. D.‎ ‎7.已知角的终边过点,且,则的值为 A. B. C. D.‎ ‎8.的三内角,,的对边分别为,,,且满足,则的形状是 A.正三角形 B.等腰三角形 C.等腰直角三角形 D.等腰三角形或直角三角形 ‎9.已知,是方程的两根,且,,则 A. B. C. D.或 ‎10.已知函数的图象与轴相邻交点的横坐标相差,把函数的图象沿轴向左平移个单位,得到函数的图象.关于函数,下列说法正确的是 A.在上是增函数 B.其图象关于直线对称 C.函数是奇函数 D.当时,函数的值域是 ‎11.已知是三角形的内角,为直线上的点,为圆:上的点,则的最小值为(  )‎ A. B. C. D.‎ ‎12.已知函数,函数是偶函数,且,当时,,若函数恰好有6个零点,则的取值范围是 A. B. C. D.‎ 9‎ 二、填空题:本题共4小题,每题5分,共20分.‎ ‎13.函数的定义域是__________.‎ ‎14.为等腰直角三角形,且,.若点为的中点,则   .‎ ‎15.已知,且,则________.‎ ‎16.已知在三棱锥中,,,,,,且平面平面,那么三棱锥外接球的体积为__________.‎ 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.‎ ‎17.(本题10分)已知,,‎ ‎(1)求的最小正周期和单调增区间;‎ ‎(2)若,求的值域.‎ ‎18.(本题12分)在中,,,是角,,所对的边,.‎ ‎(1)求角;‎ ‎(2)若,且的面积是,求的值.‎ ‎19.(本题12分)2020年春季延期开学期间,为保证防控疫情期间中小学校“停课不停学”,各地教育行政部门、中小学及教育网站积极提供免费线上课程,为中小学生如期学习提供了便利条件.某教育网站针对高中学生的线上课程播出后,社会各界反响强烈.该网站为了解高中学生对他们的线上课程的满意程度,从收看该课程的高中学生中随机抽取了1000名学生对该线上课程进行评分(满分100分),并把相关的统计结果记录如表:‎ 9‎ 评分分组 频数 ‎100‎ ‎200‎ ‎400‎ ‎250‎ ‎50‎ ‎(1)计算这1000名学生评分的中位数、平均数,根据样本估计总体的思想,若平均数低于70分,视为不满意,试判断高中学生对该线上课程是否满意?‎ ‎(2)为了解部分学生评分偏低的原因,该网站利用分层抽样的方法从评分为[50,60),[60,70)的高中学生中抽取6人,再从中随机抽取2名学生进行详细调查,求这2名学生的评分来自不同评分分组的概率.‎ ‎20.(本题12分)如图,在四棱锥中,底面是正方形,侧棱⊥底面,,、分别是、中点,‎ ‎(1)求证:∥平面; (2)求与面所成角的正切值.‎ ‎21.(共12分)已知圆C经过点、,且直线平分圆C.‎ ‎(1)求圆C的方程;‎ ‎(2)若过点,且斜率为的直线与圆C有两个不同的交点、.若,求的值.‎ ‎22.(共12分)已知函数是奇函数.‎ ‎(1)求的值;‎ ‎(2)求解不等式 9‎ ‎(3)当时恒成立,求实数的取值范围.‎ 9‎ 高二第一次月考理科答案 一、 选择题 题号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ 答案 C B B B C A 题号 ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ 答案 B D C D D C 二、 选择题 13. ‎14. 815.16.‎ 三、 解答题 ‎17.(1)‎ 的最小正周期为.‎ 由得,() ‎ 所以的单调增区间为,‎ ‎(2)由(1)得,‎ ‎,.‎ ‎∴,的值域为 ‎18.‎ 9‎ ‎ ‎ ‎19.(1)各组中间值分别为55、65、75、85、95,‎ 故平均数为55×0.1+65×0.2+75×0.4+85×0.25+95×0.05=74.5,‎ ‎∵74.5>70,‎ ‎∴高中学生对该线上课程是满意的.‎ ‎(2)由题意知,从评分为[50,60)的学生中抽取了2人,分别记为x,y,‎ 从评分为[60,70)的学生中抽取了4人,分别记为a,b,c,d,‎ 则所有可能的结果有:‎ ‎(x,y),(x,a),(x,b),(x,c),(x,d),(y,a),(y,b),(y,c),‎ ‎(y,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共15个.‎ 记两人来自同一组为事件A,则事件A包括的可能结果有:‎ ‎(x,y),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共7个,‎ 故这2名学生的评分来自不同评分分组的概率为.‎ ‎20. (1)证明:取PB的中点M,连接EM,FM,‎ ‎∵E,M分别是PC,PB的中点,‎ ‎∴EM∥BC,EM=BC,‎ 9‎ ‎∵四边形ABCD是正方形,F是AD的中点,‎ ‎∴DF∥BC,DF=BC,‎ ‎∴四边形DEMF是平行四边形,∴DE∥FM,‎ 又DE⊄平面PFB,FM⊂平面PFB,‎ ‎∴DE∥平面PFB.‎ ‎(2)解:∵PD⊥平面ABCD,BC⊂平面ABCD,‎ ‎∴PD⊥BC,‎ ‎∵四边形ABCD是正方形,∴BC⊥CD,‎ 又PD⊂平面PCD,CD⊂平面PCD,PD∩CD=D,‎ ‎∴BC⊥平面PCD.‎ ‎∴∠BPC为直线PB与平面PCD所成的角,‎ ‎∵PD=DC=BC,‎ ‎∴PC=CD=BC,∴tan∠BPC==.‎ ‎21.(1)AB中点,,所以AB的中垂线方程为 又直线m经过圆心,所以联立,解得圆心,‎ 半径 所以圆C的方程为:‎ (2) 设直线,点,‎ 联立,得 ‎,得 9‎ 则,‎ 解得(舍),或∴.‎ ‎22.‎ 9‎