- 119.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
函数性质的综合问题
建议用时:45分钟
一、选择题
1.设f(x)是定义在R上周期为2的奇函数,当0≤x≤1时,f(x)=x2-x,则f=( )
A.- B.-
C. D.
C [因为f(x)是定义在R上周期为2的奇函数,所以f=-f=-f.又当0≤x≤1时,f(x)=x2-x,所以f=2-=-,则f=.]
2.下列函数中,既是奇函数又在(0,+∞)上单调递增的是( )
A.y=ex+e-x B.y=ln(|x|+1)
C.y= D.y=x-
D [选项A、B显然是偶函数,排除;选项C是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意; 选项D中,y=x-是奇函数,且y=x和y=-在(0,+∞)上均为增函数,故y=x-在(0,+∞)上为增函数,所以选项D正确.]
3.已知定义在R上的奇函数f(x)有f+f(x)=0,当-≤x≤0时,f(x)=2x+a,则f(16)的值为( )
A. B.-
C. D.-
A [由f+f(x)=0,得f(x)=-f=f(x+5),
∴f(x)是以5为周期的周期函数,
∴f(16)=f(1+3×5)=f(1).
∵f(x)是R上的奇函数,
∴f(0)=1+a=0,∴a=-1.
∴当-≤x≤0时,f(x)=2x-1,
∴f(-1)=2-1-1=-,
∴f(1)=,∴f(16)=.]
4.定义在R上的奇函数f(x)满足f=f(x),当x∈时,f(x)=log(1-x),则f(x)在区间内是( )
A.减函数且f(x)>0 B.减函数且f(x)<0
C.增函数且f(x)>0 D.增函数且f(x)<0
D [当x∈时,由f(x)=log(1-x)可知,f(x)单调递增且f(x)>0,又函数f(x)为奇函数,所以f(x)在区间上也单调递增,且f(x)<0.由f=f(x)知,函数的周期为,所以在区间上,函数f(x)单调递增且f(x)<0.]
5.(2019·合肥调研)定义在R上的奇函数f(x)满足f(x+2)=-f(x),且在[0,1]上是减函数,则有( )
A.f<f<f
B.f<f<f
C.f<f<f
D.f<f<f
C [因为f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x),所以函数的周期为4,作出f(x)的草图,如图,由图可知f<f<f.
]
二、填空题
6.已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=________.
6 [∵f(x+4)=f(x-2),
∴f(x+6)=f(x),∴f(x)的周期为6,
∵919=153×6+1,∴f(919)=f(1).
又f(x)为偶函数,∴f(919)=f(1)=f(-1)=6.]
7.定义在实数集R上的函数f(x)满足f(x)+f(x+2)=0,且f(4-x)=f(x).现有以下三个命题:
①8是函数f(x)的一个周期;②f(x)的图像关于直线x=2对称;③f(x)是偶函数.
其中正确命题的序号是________.
①②③ [∵f(x)+f(x+2)=0,∴f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),∴f(x)的周期为4,故①正确;又f(4-x)=f(x),所以f(2+x)=f(2-x),即f(x)的图像关于直线x=2对称,故②正确;由f(x)=f(4-x)得f(-x)=f(4+x)=f(x),故③正确.]
8.已知定义在R上的奇函数y=f(x)在(0,+∞)内单调递增,且f =0,则f(x)>0的解集为________.
[由奇函数y=f(x)在(0,+∞)内单调递增,且f =0,可知函数y=f(x
)在(-∞,0)内单调递增,且f =0.由f(x)>0,可得x>或-<x<0.]
三、解答题
9.设f(x)是定义域为R的周期函数,最小正周期为2,且f(1+x)=f(1-x),当-1≤x≤0时,f(x)=-x.
(1)判断f(x)的奇偶性;
(2)试求出函数f(x)在区间[-1,2]上的表达式.
[解] (1)∵f(1+x)=f(1-x),∴f(-x)=f(2+x).
又f(x+2)=f(x),∴f(-x)=f(x).
又f(x)的定义域为R,∴f(x)是偶函数.
(2)当x∈[0,1]时,-x∈[-1,0],
则f(x)=f(-x)=x;
从而当1≤x≤2时,-1≤x-2≤0,
f(x)=f(x-2)=-(x-2)=-x+2.
故f(x)=
10.设函数f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值;
(2)当-4≤x≤4时,求函数f(x)的图像与x轴所围成图形的面积.
[解] (1)由f(x+2)=-f(x)得,
f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
所以f(x)是以4为周期的周期函数,
所以f(π)=f(-1×4+π)=f(π-4)=-f(4-π)=-(4-π)=π-4.
(2)由f(x)是奇函数且f(x+2)=-f(x),
得f[(x-1)+2]=-f(x-1)=f[-(x-1)],
即f(1+x)=f(1-x).
故函数y=f(x)的图像关于直线x=1对称.
又当0≤x≤1时,f(x)=x,且f(x)的图像关于原点成中心对称,则f(x)的图像如图所示.
当-4≤x≤4时,设f(x)的图像与x轴围成的图形面积为S,则S=4S△OAB=4×=4.
1.(2019·惠州调研)已知定义域为R的偶函数f(x)在(-∞,0]上是减函数,且f(1)=2,则不等式f(log2x)>2的解集为( )
A.(2,+∞) B.∪(2,+∞)
C.∪(,+∞) D.(,+∞)
B [f(x)是R上的偶函数,且在(-∞,0]上是减函数,所以f(x)在[0,+∞)上是增函数,因为f(1)=2,所以f(-1)=2,所以f(log2x)>2⇔f(|log2x|)>f(1)⇔|log2x|>1⇔log2x>1或log2x<-1⇔x>2或0<x<.故选B.]
2.已知函数y=f(x)的定义域为R,且满足下列三个条件:
①对任意的x1,x2∈[4,8],当x1<x2时,都有>0恒成立;
②f(x+4)=-f(x);
③y=f(x+4)是偶函数.
若a=f(7),b=f(11),c=f(2 018),则a,b,c的大小关系正确的是( )
A.a<b<c B.b<c<a
C.a<c<b D.c<b<a
B [由①知函数f(x)在区间[4,8]上为单调递增函数;由②知f(x+8)=-f(x+4)=f(x),即函数f(x)的周期为8,所以c=f(2 018)=f(252×8+2)=f(2),b=f(11)=f(3);由③可知函数f(x)的图像关于直线x=4对称,所以b=f(3)=f(5),c=f(2)=f(6).因为函数f(x)在区间[4,8]上为单调递增函数,所以f(5)<f(6)<f(7),即b<c<a,故选B.]
3.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y),f(x+2)=-f(x)且f(x)在
[-1,0]上是增函数,给出下列几个命题:
①f(x)是周期函数;
②f(x)的图像关于x=1对称;
③f(x)在[1,2]上是减函数;
④f(2)=f(0),
其中正确命题的序号是________(请把正确命题的序号全部写出来).
①②③④ [因为f(x+y)=f(x)+f(y)对任意x,y∈R恒成立.
令x=y=0,
所以f(0)=0.令x+y=0,所以y=-x,
所以f(0)=f(x)+f(-x).
所以f(-x)=-f(x),所以f(x)为奇函数.
因为f(x)在x∈[-1,0]上为增函数,又f(x)为奇函数,
所以f(x)在[0,1]上为增函数.
由f(x+2)=-f(x)⇒f(x+4)=-f(x+2)
⇒f(x+4)=f(x),
所以周期T=4,
即f(x)为周期函数.
f(x+2)=-f(x)⇒f(-x+2)=-f(-x).
又因为f(x)为奇函数.
所以f(2-x)=f(x),
所以函数关于x=1对称.
由f(x)在[0,1]上为增函数,
又关于x=1对称,
所以f(x)在[1,2]上为减函数.
由f(x+2)=-f(x),令x=0得f(2)=-f(0)=f(0).]
4.已知函数y=f(x)在定义域[-1,1]上既是奇函数又是减函数.
(1)求证:对任意x1,x2∈[-1,1],有[f(x1)+f(x2)]·(x1+x2)≤0;
(2)若f(1-a)+f(1-a2)<0,求实数a的取值范围.
[解] (1)证明:若x1+x2=0,显然不等式成立.
若x1+x2<0,则-1≤x1<-x2≤1,
因为f(x)在[-1,1]上是减函数且为奇函数,
所以f(x1)>f(-x2)=-f(x2),所以f(x1)+f(x2)>0.
所以[f(x1)+f(x2)](x1+x2)<0成立.
若x1+x2>0,则1≥x1>-x2≥-1,
同理可证f(x1)+f(x2)<0.
所以[f(x1)+f(x2)](x1+x2)<0成立.
综上得证,对任意x1,x2∈[-1,1],有[f(x1)+f(x2)]·(x1+x2)≤0恒成立.
(2)因为f(1-a)+f(1-a2)<0⇔f(1-a2)<-f(1-a)=f(a-1),所以由f(x)在定义域[-1,1]上是减函数,得
即
解得0≤a<1.
故所求实数a的取值范围是[0,1).
1.定义在R上的函数f(x)满足:①对任意x∈R有f(x+4)=f(x);②f(x)在[0,2]上是增函数;③f(x+2)的图像关于y轴对称.则下列结论正确的是( )
A.f(7)<f(6.5)<f(4.5)
B.f(7)<f(4.5)<f(6.5)
C.f(4.5)<f(6.5)<f(7)
D.f(4.5)<f(7)<f(6.5)
D [由①知函数f(x)的周期为4,由③知f(x+2)是偶函数,则有f(-x+2)=f(x+2),即函数f(x)图像的一条对称轴是x=2,由②知函数f(x)在[0,2]上单调递增,则在[2,4]上单调递减,且在[0,4]上越靠近x=2,对应的函数值越大,又f(7)=f(3),f(6.5)=f(2.5),f(4.5)=f(0.5),由以上分析可得f(0.5)<f(3)<f(2.5),即f(4.5)<f(7)<f(6.5).故选D.]
2.设f(x)是定义在R上的偶函数,其图像关于直线x=1对称,对任意x1,x2∈,都有f(x1+x2)=f(x1)·f(x2).
(1)设f(1)=2,求f,f;
(2)证明:f(x)是周期函数.
[解] (1)由f(x1+x2)=f(x1)·f(x2),x1,x2∈,知f(x)=f· f≥0,x∈[0,1].
∵f(1)=f=f·f=2,f(1)=2,
∴f=2.
∵f=f=f·f=2,f=2,∴f=2.
(2)证明:依题设,y=f(x)的图像关于直线x=1对称,
∴f(x)=f(2-x).
又∵f(-x)=f(x),
∴f(-x)=f(2-x),
∴f(x)=f(2+x),
∴f(x)是定义在R上的周期函数,且2是它的一个周期.
相关文档
- 【数学】2020届一轮复习北师大版第2021-06-1612页
- 【数学】2019届一轮复习北师大版 2021-06-1613页
- 【数学】2020届一轮复习北师大版不2021-06-165页
- 2021版高考数学一轮复习第九章平面2021-06-1656页
- 【数学】2019届一轮复习北师大版导2021-06-1632页
- 【数学】2019届高考一轮复习北师大2021-06-165页
- 【数学】2020届一轮复习北师大版概2021-06-1620页
- 2021版高考数学一轮复习第三章导数2021-06-1651页
- 【数学】2019届高考一轮复习北师大2021-06-1615页
- 【数学】2018届一轮复习北师大版第2021-06-1612页