- 117.00 KB
- 2021-06-23 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
实际问题的函数建模
【教学目标】
能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.
【教学重难点】
1.教学重点:运用一次函数、二次函数模型解决一些实际问题.
2. 教学难点:将实际问题转变为数学模型.
【教学过程】
(一)创设情景,揭示课题
引例:大约在一千五百年前,大数学家孙子在《孙子算经》中记载了这样的一道题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只有几只鸡和兔?你知道孙子是如何解答这个“鸡兔同笼”问题的吗?你有什么更好的方法?老师介绍孙子的大胆解法:他假设砍去每只鸡和兔一半的脚,则每只鸡和兔就变成了“独脚鸡”和“双脚兔”. 这样,“独脚鸡”和“双脚兔”脚的数量与它们头的数量之差,就是兔子数,即:47-35=12;鸡数就是:35-12=23.
比例激发学生学习兴趣,增强其求知欲望.
可引导学生运用方程的思想解答“鸡兔同笼”问题.
(二)结合实例,探求新知.
例1 某农家旅游公司有客房300间,每间日房租为20元,每天都客满. 公司欲提高档次,并提高租金,如果每间客房日增加2元,客房出租数就会减少10间. 若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?
引导学生探索过程如下:
1)本例涉及到哪些数量关系?
2)应如何选取变量,其取值范围又如何?
3)应当选取何种函数模型来描述变量的关系?
4)“总收入最高”的数学含义如何理解?
根据老师的引导启发,学生自主,建立恰当的函数模型,进行解答,然后交流、进行评析.
[略解:]
设客房日租金每间提高2元,则每天客房出租数为300-10,由>0,且300-10>0得:0<<30
2
设客房租金总上收入元,则有:
=(20+2)(300-10)
=-20(-10)2 + 8000(0<<30)
由二次函数性质可知当=10时,=8000.
所以当每间客房日租金提高到20+10×2=40元时,客户租金总收入最高,为每天8000元.
变式:某列火车众北京西站开往石家庄,全程277km,火车出发10min开出13km后,以120km/h匀速行驶. 试写出火车行驶的总路程S与匀速行驶的时间t之间的关系式,并求火车离开北京2h内行驶的路程.
例2 要建一个容积为8m3,深为2m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,试求应当怎样设计,才能使水池总造价最低?并求此最低造价.
解析:选择合适的数学模型建立函数关系
解:设长方体底面的长为xm,则宽为(4/x)m,水池的总造价为y元
y=480+80[4x+(16/x)]
当x=2时,总造价最低为1760元
点评:利用基本不等式
变式:某工厂今年1月、2月、3月生产某种产品的数量分别为1万件,1.2万件,1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据用一个函数模拟该产品的月产量与月份的关系,模拟函数可以选用二次函数或函数.已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.
【板书设计】
一、已知函数模型
二、例题
例1
变式1
例2
变式2
【作业布置】教材P122练习1、2
2