• 130.73 KB
  • 2021-06-24 发布

2018人教A版数学必修一1.1.3《集合的基本运算》(2)学案

  • 4页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
重庆市万州分水中学高中数学 ‎1.1.3‎ 集合的基本运算(2)学案 新人教A版必修1‎ ‎ 学习目标 ‎ ‎1. 理解在给定集合中一个子集的补集的含义,会求给定子集的补集;‎ ‎2. 能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用.‎ ‎ 学习过程 ‎ 一、课前准备 ‎(预习教材P10~ P11,找出疑惑之处)‎ 复习1:集合相关概念及运算.‎ ‎① 如果集合A的任意一个元素都是集合B的元素,则称集合A是集合B的 ,记作 .‎ ‎ 若集合,存在元素,则称集合A是集合B的 ,记作 .‎ ‎ 若,则 .‎ ‎② 两个集合的 部分、 部分,分别是它们交集、并集,用符号语言表示为:‎ ‎ ;‎ ‎ .‎ 复习2:已知A={x|x+3>0},B={x|x≤-3},则A、B、R有何关系?‎ 二、新课导学 ‎※ 学习探究 探究:设U={全班同学}、A={全班参加足球队的同学}、B={全班没有参加足球队的同学},则U、A、B有何关系?‎ 新知:全集、补集.‎ ‎① 全集:如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U. ‎ ‎② 补集:已知集合U, 集合AU,由U中所有不属于A的元素组成的集合,叫作A相对于U的补集(complementary set),记作:,读作:“A在U中补集”,即.‎ 补集的Venn图表示如右:‎ ‎ 说明:全集是相对于所研究问题而言的一个相对概念,补集的概念必须要有全集的限制.‎ 试试:‎ ‎(1)U={2,3,4},A={4,3},B=,则= ,= ;‎ ‎(2)设U={x|x<8,且x∈N},A={x|(x-2)(x-4)(x-5)=0},则= ;‎ ‎(3)设集合,则= ;‎ ‎(4)设U={三角形},A={锐角三角形},则= .‎ 反思:(1)在解不等式时,一般把什么作为全集?在研究图形集合时,一般把什么作为全集?‎ ‎(2)Q的补集如何表示?意为什么?‎ ‎※ 典型例题 例1 设U={x|x<13,且x∈N},A={8的正约数},B={12的正约数},求、.‎ 例2 设U=R,A={x|-1