- 360.60 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第二讲 选修4-5 不等式选讲
考点一 含绝对值不等式的解法
1.|ax+b|≤c,|ax+b|≥c型不等式的解法
(1)若c>0,则|ax+b|≤c⇔-c≤ax+b≤c,|ax+b|≥c⇔ax+b≥c或ax+b≤-c,然后根据a,b的取值求解即可;
(2)若c<0,则|ax+b|≤c的解集为∅,|ax+b|≥c的解集为R.
2.|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式的解法
(1)零点分段讨论法.
(2)绝对值的几何意义.
(3)数形结合法.
[解] (1)当a=1时,f(x)=|x+1|-|x-1|,
即f(x)=
故不等式f(x)>1的解集为.
(2)当x∈(0,1)时|x+1|-|ax-1|>x成立等价于当x∈(0,1)时|ax-
1|<1成立.
若a≤0,则当x∈(0,1)时|ax-1|≥1;
若a>0时,则|ax-1|<1的解集为.
所以≥1,故0x-f(x)恒成立,知|x+1|+|x-a|>2恒成立,即(|x+1|+|x-a|)min>2.
而|x+1|+|x-a|≥|(x+1)-(x-a)|=|1+a|,
所以|1+a|>2,解得a>1或a<-3.
绝对值恒成立问题应关注的3点
(1)巧用“||a|-|b||≤|a±b|≤|a|+|b|”求最值.
(2)f(x)a恒成立⇔f(x)min>a.
(3)f(x)a有解⇔f(x)max>a.
[对点训练]
1.[角度1](2018·山东淄博模拟)设函数f(x)=|x+4|.
(1)若y=f(2x+a)+f(2x-a)的最小值为4,求a的值;
(2)求不等式f(x)>1-x的解集.
[解] (1)因为f(x)=|x+4|,
所以y=f(2x+a)+f(2x-a)=|2x+a+4|+|2x-a+4|≥|2x+a+4-(2x-a+4)|=|2a|,
又y=f(2x+a)+f(2x-a)的最小值为4,
∴|2a|=4,
∴a=±2.
(2)f(x)=|x+4|=
∴不等式f(x)>1-x等价于
解得x>-2或x<-10,
故不等式f(x)>1-x的解集为{x|x>-2或x<-10}.
2.[角度2](2018·河南郑州二模)已知函数f(x)=|2x+1|,g(x)=|x|+a.
(1)当a=0时,解不等式f(x)≥g(x);
(2)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.
[解] (1)当a=0时,由f(x)≥g(x)得|2x+1|≥|x|,两边平方整理得3x2+4x+1≥0,解得x≤-1或x≥-,∴原不等式的解集为(-∞,-1]∪.
(2)由f(x)≤g(x)得a≥|2x+1|-|x|,
令h(x)=|2x+1|-|x|,
则h(x)=
故h(x)min=h=-,
所以实数a的取值范围为a≥-.
考点三 不等式的证明
定理1:设a,b∈R,则a2+b2≥2ab.当且仅当a=b时,等号成立.
定理2:如果a,b为正数,则≥,当且仅当a=b时,等号成立.
定理3:如果a,b,c为正数,则≥,当且仅当a=b=c时,等号成立.
[证明] (1)(a+b)(a5+b5)
=a6+ab5+a5b+b6
=(a3+b3)2-2a3b3+ab(a4+b4)
=4+ab(a2-b2)2≥4.
(2)因为(a+b)3=a3+3a2b+3ab2+b3
=2+3ab(a+b)
≤2+(a+b)
=2+,
所以(a+b)3≤8,因此a+b≤2.
证明不等式的方法和技巧
(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或是否定性命题、唯一性命题,则考虑用反证法.
(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的基本思路是化去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.
[对点训练]
已知实数a,b,c满足a>0,b>0,c>0,且abc=1.
(1)证明:(1+a)(1+b)(1+c)≥8;
(2)证明:++≤++.
[证明] (1)∵1+a≥2,1+b≥2,1+c≥2,
∴(1+a)(1+b)(1+c)≥2·2·2=8,
∵abc=1,∴(1+a)(1+b)(1+c)≥8.
(2)∵ab+bc≥2=2,
ab+ac≥2=2,
bc+ac≥2=2,
上面三式相加得,
2ab+2bc+2ca≥2+2+2,
即ab+bc+ca≥++.
又++=ab+bc+ac,
∴++≤++.
1.(2017·全国卷Ⅰ)已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.
[解] (1)当a=1时,不等式f(x)≥g(x)等价于x2-x+|x+1|+|x-1|-4≤0.①
当x<-1时,①式化为x2-3x-4≤0,无解;
当-1≤x≤1时,①式化为x2-x-2≤0,从而-1≤x≤1;
当x>1时,①式化为x2+x-4≤0,从而14;
(2)若∀x∈,不等式a+14⇔
或或
⇔x<-2或01.
∴不等式f(x)>4的解集为(-∞,-2)∪(0,+∞).
(2)由(1)知,当x<-时,f(x)=-3x-2,
∵当x<-时,f(x)=-3x-2>,
∴a+1≤,即a≤.
∴实数a的取值范围为.
2.(2018·河南新乡二模)已知函数f(x)=|x-4|+|x-1|-3.
(1)求不等式f(x)≤2的解集;
(2)若直线y=kx-2与函数f(x)的图象有公共点,求k
的取值范围.
[解] (1)由f(x)≤2,得或或解得0≤x≤5,故不等式f(x)≤2的解集为[0,5].
(2)f(x)=|x-4|+|x-1|-3=
作出函数f(x)的图象,如图所示,
易知直线y=kx-2过定点C(0,-2),
当此直线经过点B(4,0)时,k=;
当此直线与直线AD平行时,k=-2.
故由图可知,k∈(-∞,-2)∪.
3.(2018·大庆二模)已知f(x)=|x+3|+|x-1|,g(x)=-x2+2mx.
(1)求不等式f(x)>4的解集;
(2)若对任意的x1,x2,f(x1)≥g(x2)恒成立,求m的取值范围.
[解] (1)解法一:不等式f(x)>4即|x+3|+|x-1|>4.
可得或
或
解得x<-3或x>1,所以不等式的解集为{x|x<-3或x>1}.
解法二:|x+3|+|x-1|≥|x+3-(x-1)|=4,
当且仅当(x+3)(x-1)≤0,即-3≤x≤1时,等号成立.
所以不等式的解集为{x|x<-3或x>1}.
(2)依题意可知f(x)min≥g(x)max,
由(1)知f(x)min=4,
因为g(x)=-x2+2mx=-(x-m)2+m2,
所以g(x)max=m2.
由m2≤4得m的取值范围是-2≤m≤2.
4.(2018·西安一模)设a、b为正实数,且+=2.
(1)求a2+b2的最小值;
(2)若(a-b)2≥4(ab)3,求ab的值.
[解] (1)由2=+≥2得ab≥,
当a=b=时取等号.
故a2+b2≥2ab≥1,当a=b=时取等号.
所以a2+b2的最小值是1.
(2)由+=2可得a+b=2ab,
∵(a-b)2=(a+b)2-4ab=8a2b2-4ab≥4(ab)3,
∴(ab)2-2ab+1≤0,即(ab-1)2≤0,
∴ab-1=0,即ab=1.
相关文档
- 2019年高考数学精讲二轮教案第一讲2021-06-2416页
- 2019年高考数学精讲二轮教案第一讲2021-06-2426页
- 2019年高考数学精讲二轮教案第三讲2021-06-2326页
- 2019年高考数学精讲二轮教案第一讲2021-06-2132页
- 2019年高考数学精讲二轮教案第二讲2021-06-1925页
- 2019年高考数学精讲二轮教案第一讲2021-06-1622页
- 2019年高考数学精讲二轮教案第一讲2021-06-1617页
- 2019年高考数学精讲二轮教案第二讲2021-06-1620页
- 2019年高考数学精讲二轮教案第二讲2021-06-1521页
- 2019年高考数学精讲二轮教案第一讲2021-06-1522页