- 381.50 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2013年浙江省高考数学试卷(理科)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)已知i是虚数单位,则(﹣1+i)(2﹣i)=( )
A.﹣3+i B.﹣1+3i C.﹣3+3i D.﹣1+i
2.(5分)设集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},则(∁RS)∪T=( )
A.(﹣2,1] B.(﹣∞,﹣4] C.(﹣∞,1] D.[1,+∞)
3.(5分)已知x,y为正实数,则( )
A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgy
C.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy
4.(5分)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
5.(5分)某程序框图如图所示,若该程序运行后输出的值是,则( )
A.a=4 B.a=5 C.a=6 D.a=7
6.(5分)已知,则tan2α=( )
A. B. C. D.
7.(5分)设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有则( )
A.∠ABC=90° B.∠BAC=90° C.AB=AC D.AC=BC
8.(5分)已知e为自然对数的底数,设函数f(x)=(ex﹣1)(x﹣1)k(k=1,2),则( )
A.当k=1时,f(x)在x=1处取得极小值
B.当k=1时,f(x)在x=1处取得极大值
C.当k=2时,f(x)在x=1处取得极小值
D.当k=2时,f(x)在x=1处取得极大值
9.(5分)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是( )
A. B. C. D.
10.(5分)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则( )
A.平面α与平面β垂直
B.平面α与平面β所成的(锐)二面角为45°
C.平面α与平面β平行
D.平面α与平面β所成的(锐)二面角为60°
二、填空题:本大题共7小题,每小题4分,共28分.
11.(4分)设二项式的展开式中常数项为A,则A= .
12.(4分)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于 cm3.
13.(4分)设z=kx+y,其中实数x,y满足,若z的最大值为12,则实数k= .
14.(4分)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有 种(用数字作答)
15.(4分)设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于 .
16.(4分)△ABC中,∠C=90°,M是BC的中点,若,则sin∠BAC= .
17.(4分)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于 .
三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.
18.(14分)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3
成等比数列.
(Ⅰ)求d,an;
(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.
19.(14分)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.
(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.求ξ分布列;
(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若,求a:b:c.
20.(15分)如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.
(1)证明:PQ∥平面BCD;
(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.
21.(15分)如图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.
(1)求椭圆C1的方程;
(2)求△ABD面积的最大值时直线l1的方程.
22.(14分)已知a∈R,函数f(x)=x3﹣3x2+3ax﹣3a+3.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[0,2]时,求|f(x)|的最大值.
2013年浙江省高考数学试卷(理科)
参考答案与试题解析
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)(2013•浙江)已知i是虚数单位,则(﹣1+i)(2﹣i)=( )
A.﹣3+i B.﹣1+3i C.﹣3+3i D.﹣1+i
【分析】直接利用两个复数代数形式的乘法法则,以及虚数单位i的幂运算性质,运算求得结果.
【解答】解:(﹣1+i)(2﹣i)=﹣2+i+2i+1=﹣1+3i,
故选B.
2.(5分)(2013•浙江)设集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},则(∁RS)∪T=( )
A.(﹣2,1] B.(﹣∞,﹣4] C.(﹣∞,1] D.[1,+∞)
【分析】先根据一元二次不等式求出集合T,然后求得∁RS,再利用并集的定义求出结果.
【解答】解:∵集合S={x|x>﹣2},
∴∁RS={x|x≤﹣2},
T={x|x2+3x﹣4≤0}={x|﹣4≤x≤1},
故(∁RS)∪T={x|x≤1}
故选C.
3.(5分)(2013•浙江)已知x,y为正实数,则( )
A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgy
C.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy
【分析】直接利用指数与对数的运算性质,判断选项即可.
【解答】解:因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),
所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,
故选D.
4.(5分)(2013•浙江)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
【分析】φ=⇒f(x)=Acos(ωx+)⇒f(x)=﹣Asin(ωx)(A>0,ω>0,x∈R)是奇函数.f(x)为奇函数⇒f(0)=0⇒φ=kπ+,k∈Z.所以“f(x)是奇函数”是“φ=”必要不充分条件.
【解答】解:若φ=,
则f(x)=Acos(ωx+)
⇒f(x)=﹣Asin(ωx)(A>0,ω>0,x∈R)是奇函数;
若f(x)是奇函数,
⇒f(0)=0,
∴f(0)=Acos(ω×0+φ)=Acosφ=0.
∴φ=kπ+,k∈Z,不一定有φ=
“f(x)是奇函数”是“φ=”必要不充分条件.
故选B.
5.(5分)(2013•浙江)某程序框图如图所示,若该程序运行后输出的值是,则( )
A.a=4 B.a=5 C.a=6 D.a=7
【分析】根据已知流程图可得程序的功能是计算S=1++…+的值,利用裂项相消法易得答案.
【解答】解:由已知可得该程序的功能是
计算并输出S=1++…+=1+1﹣=2﹣.
若该程序运行后输出的值是,则 2﹣=.
∴a=4,
故选A.
6.(5分)(2013•浙江)已知,则tan2α=( )
A. B. C. D.
【分析】由题意结合sin2α+cos2α=1可解得sinα,和cosα,进而可得tanα,再代入二倍角的正切公式可得答案.
【解答】解:∵,又sin2α+cos2α=1,
联立解得,或
故tanα==,或tanα=3,
代入可得tan2α===﹣,
或tan2α===
故选C
7.(5分)(2013•浙江)设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有则( )
A.∠ABC=90° B.∠BAC=90° C.AB=AC D.AC=BC
【分析】设||=4,则||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得||2﹣(a+1)||+a≥0恒成立,只需△=(a+1)2﹣4a=(a﹣1)2≤0即可,由此能求出△ABC是等腰三角形,AC=BC.
【解答】解:设||=4,则||=1,过点C作AB的垂线,垂足为H,
在AB上任取一点P,设HP0=a,则由数量积的几何意义可得,
=||•||=||2﹣(a+1)||,
•=﹣a,
于是•≥••恒成立,
整理得||2﹣(a+1)||+a≥0恒成立,
只需△=(a+1)2﹣4a=(a﹣1)2≤0即可,于是a=1,
因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,
所以AC=BC.
故选:D.
8.(5分)(2013•浙江)已知e为自然对数的底数,设函数f(x)=(ex﹣1)(x﹣1)k(k=1,2),则( )
A.当k=1时,f(x)在x=1处取得极小值
B.当k=1时,f(x)在x=1处取得极大值
C.当k=2时,f(x)在x=1处取得极小值
D.当k=2时,f(x)在x=1处取得极大值
【分析】通过对函数f(x)求导,根据选项知函数在x=1处有极值,验证f'(1)=0,再验证f(x)在x=1处取得极小值还是极大值即可得结论.
【解答】解:当k=1时,函数f(x)=(ex﹣1)(x﹣1).
求导函数可得f'(x)=ex(x﹣1)+(ex﹣1)=(xex﹣1),
f'(1)=e﹣1≠0,f'(2)=2e2﹣1≠0,
则f(x)在在x=1处与在x=2处均取不到极值,
当k=2时,函数f(x)=(ex﹣1)(x﹣1)2.
求导函数可得f'(x)=ex(x﹣1)2+2(ex﹣1)(x﹣1)=(x﹣1)(xex+ex﹣2),
∴当x=1,f'(x)=0,且当x>1时,f'(x)>0,当x0<x<1时(x0为极大值点),f'(x)<0,故函数f(x)在(1,+∞)上是增函数;
在(x0,1)上是减函数,从而函数f(x)在x=1取得极小值.对照选项.
故选C.
9.(5分)(2013•浙江)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是( )
A. B. C. D.
【分析】不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.
【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,
∴2a=4,b=1,c=;
∴|AF1|+|AF2|=2a=4,即x+y=4;①
又四边形AF1BF2为矩形,
∴+=,即x2+y2=(2c)2==12,②
由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,
则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2c=2,
∴双曲线C2的离心率e===.
故选D.
10.(5分)(2013•浙江)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则( )
A.平面α与平面β垂直
B.平面α与平面β所成的(锐)二面角为45°
C.平面α与平面β平行
D.平面α与平面β所成的(锐)二面角为60°
【分析】设P1是点P在α内的射影,点P2是点P在β内的射影.根据题意点P1在β内的射影与P2在α内的射影重合于一点,由此可得四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角,根据面面垂直的定义可得平面α与平面β垂直,得到本题答案.
【解答】解:设P1=fα(P),则根据题意,得点P1是过点P作平面α垂线的垂足
∵Q1=fβ[fα(P)]=fβ(P1),
∴点Q1是过点P1作平面β垂线的垂足
同理,若P2=fβ(P),得点P2是过点P作平面β垂线的垂足
因此Q2=fα[fβ(P)]表示点Q2是过点P2作平面α垂线的垂足
∵对任意的点P,恒有PQ1=PQ2,
∴点Q1与Q2重合于同一点
由此可得,四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角
∵∠P1Q1P2是直角,∴平面α与平面β垂直
故选:A
二、填空题:本大题共7小题,每小题4分,共28分.
11.(4分)(2013•浙江)设二项式的展开式中常数项为A,则A= ﹣10 .
【分析】先求出二项式展开式的通项公式,再令x的系数等于0,求得r的值,即可求得展开式中的常数项的值.
【解答】解:二项式的展开式的通项公式为 Tr+1=••(﹣1)r•=(﹣1)r••.
令=0,解得r=3,故展开式的常数项为﹣=﹣10,
故答案为﹣10.
12.(4分)(2013•浙江)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于 24 cm3.
【分析】先根据三视图判断几何体的形状,再利用体积公式计算即可.
【解答】解:几何体为三棱柱去掉一个三棱锥后的几何体,底面是直角三角形,直角边分别为3,4,侧面的高为5,被截取的棱锥的高为3.如图:
V=V棱柱﹣V棱锥==24(cm3)
故答案为:24.
13.(4分)(2013•浙江)设z=kx+y,其中实数x,y满足,若z的最大值为12,则实数k= 2 .
【分析】先画出可行域,得到角点坐标.再对k进行分类讨论,通过平移直线z=kx+y得到最大值点A,即可得到答案.
【解答】解:可行域如图:
由得:A(4,4),
同样地,得B(0,2),
z=kx+y,即y=﹣kx+z,分k>0,k<0两种情况.
当k>0时,
目标函数z=kx+y在A点取最大值,即直线z=kx+y在y轴上的截距z最大,即12=4k+4,得k=2;
当k<0时,
①当k>﹣时,目标函数z=kx+y在A点(4,4)时取最大值,即直线z=kx+y在y轴上的截距z最大,
此时,12=4k+4,
故k=2.
②当k时,目标函数z=kx+y在B点(0,2)时取最大值,即直线z=kx+y在y轴上的截距z最大,
此时,12=0×k+2,
故k不存在.
综上,k=2.
故答案为:2.
14.(4分)(2013•浙江)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有 480 种(用数字作答)
【分析】按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.
【解答】解:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,
因为左右是对称的,所以只看左的情况最后乘以2即可.
当C在左边第1个位置时,有A,
当C在左边第2个位置时,A和B有C右边的4个位置可以选,有AA,
当C在左边第3个位置时,有AA+AA,
共为240种,乘以2,得480.则不同的排法共有480种.
故答案为:480.
15.(4分)(2013•浙江)设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|
=2,则直线l的斜率等于 不存在 .
【分析】由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).利用根与系数的关系可得y1+y2=4m,利用中点坐标公式可得=2m,x0=my0﹣1=2m2﹣1.Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).再利用两点间的距离公式即可得出m及k,再代入△判断是否成立即可.
【解答】解:由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.
设A(x1,y1),B(x2,y2),Q(x0,y0).
∴y1+y2=4m,∴=2m,∴x0=my0﹣1=2m2﹣1.
∴Q(2m2﹣1,2m),
由抛物线C:y2=4x得焦点F(1,0).
∵|QF|=2,∴,化为m2=1,解得m=±1,不满足△>0.
故满足条件的直线l不存在.
故答案为不存在.
16.(4分)(2013•浙江)△ABC中,∠C=90°,M是BC的中点,若,则sin∠BAC= .
【分析】作出图象,设出未知量,在△ABM中,由正弦定理可得sin∠AMB=,进而可得cosβ=,在RT△ACM中,还可得cosβ=,建立等式后可得a=b,再由勾股定理可得c=,而sin∠BAC═=
,代入化简可得答案.
【解答】解:如图
设AC=b,AB=c,CM=MB=,∠MAC=β,
在△ABM中,由正弦定理可得=,
代入数据可得=,解得sin∠AMB=,
故cosβ=cos(﹣∠AMC)=sin∠AMC=sin(π﹣∠AMB)=sin∠AMB=,
而在RT△ACM中,cosβ==,
故可得=,化简可得a4﹣4a2b2+4b4=(a2﹣2b2)2=0,
解之可得a=b,再由勾股定理可得a2+b2=c2,联立可得c=,
故在RT△ABC中,sin∠BAC====,
故答案为:
17.(4分)(2013•浙江)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于 2 .
【分析】由题意求得 =,||==,从而可得 ==
=,再利用二次函数的性质求得的最大值.
【解答】解:∵、 为单位向量,和的夹角等于30°,∴=1×1×cos30°=.
∵非零向量=x+y,∴||===,
∴====,
故当=﹣时,取得最大值为2,
故答案为 2.
三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.
18.(14分)(2013•浙江)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.
(Ⅰ)求d,an;
(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|an|.
【分析】(Ⅰ)直接由已知条件a1=10,且a1,2a2+2,5a3成等比数列列式求出公差,则通项公式an可求;
(Ⅱ)利用(Ⅰ)中的结论,得到等差数列{an}的前11项大于等于0,后面的项小于0,所以分类讨论求d<0时|a1|+|a2|+|a3|+…+|an|的和.
【解答】解:(Ⅰ)由题意得,即,整理得d2﹣3d﹣4=0.解得d=﹣1或d=4.
当d=﹣1时,an=a1+(n﹣1)d=10﹣(n﹣1)=﹣n+11.
当d=4时,an=a1+(n﹣1)d=10+4(n﹣1)=4n+6.
所以an=﹣n+11或an=4n+6;
(Ⅱ)设数列{an}的前n项和为Sn,因为d<0,由(Ⅰ)得d=﹣1,an=﹣n+11.
则当n≤11时,.
当n≥12时,|a1|+|a2|+|a3|+…+|an|=﹣Sn+2S11=.
综上所述,
|a1|+|a2|+|a3|+…+|an|=.
19.(14分)(2013•浙江)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.
(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.求ξ分布列;
(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若,求a:b:c.
【分析】(1)ξ的可能取值有:2,3,4,5,6,求出相应的概率可得所求ξ的分布列;
(2)先列出η的分布列,再利用η的数学期望和方差公式,即可得到结论.
【解答】解:(1)由题意得ξ=2,3,4,5,6,
P(ξ=2)==;P(ξ=3)==;P(ξ=4)==;
P(ξ=5)==;P(ξ=6)==.
故所求ξ的分布列为
ξ
2
3
4
5
6
P
(2)由题意知η的分布列为
η
1
2
3
P
Eη==
Dη=(1﹣)2+(2﹣)2+(3﹣)2=.
得,
解得a=3c,b=2c,
故a:b:c=3:2:1.
20.(15分)(2013•浙江)如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.
(1)证明:PQ∥平面BCD;
(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.
【分析】(1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ.根据平行线分线段成比例定理结合三角形的中位线定理证出四边形OPQF是平行四边形,从而PQ∥OF,再由线面平行判定定理,证出PQ∥平面BCD;
(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH.根据线面垂直的判定与性质证出BM⊥CH,因此∠CHG是二面角C﹣BM﹣D的平面角,可得∠CHG=60°.设∠BDC=θ,用解直角三角形的方法算出HG和CG关于θ的表达式,最后在Rt△CHG中,根据正切的定义得出tan∠CHG==,从而得到tanθ=,由此可得∠BDC.
【解答】(1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ
∵△ACD中,AQ=3QC且DF=3CF,∴QF∥AD且QF=AD
∵△BDM中,O、P分别为BD、BM的中点
∴OP∥DM,且OP=DM,结合M为AD中点得:OP∥AD且OP=AD
∴OP∥QF且OP=QF,可得四边形OPQF是平行四边形
∴PQ∥OF
∵PQ⊄平面BCD且OF⊂平面BCD,∴PQ∥平面BCD;
(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH
∵AD⊥平面BCD,CG⊂平面BCD,∴AD⊥CG
又∵CG⊥BD,AD、BD是平面ABD内的相交直线
∴CG⊥平面ABD,结合BM⊂平面ABD,得CG⊥BM
∵GH⊥BM,CG、GH是平面CGH内的相交直线
∴BM⊥平面CGH,可得BM⊥CH
因此,∠CHG是二面角C﹣BM﹣D的平面角,可得∠CHG=60°
设∠BDC=θ,可得
Rt△BCD中,CD=BDcosθ=2cosθ,CG=CDsinθ=sinθcosθ,BG=BCsinθ=2sin2θ
Rt△BMD中,HG==;Rt△CHG中,tan∠CHG==
∴tanθ=,可得θ=60°,即∠BDC=60°
21.(15分)(2013•浙江)如图,点P(0,﹣1)是椭圆C1:+=1(a>b>
0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.
(1)求椭圆C1的方程;
(2)求△ABD面积的最大值时直线l1的方程.
【分析】(1)由题意可得b=1,2a=4,即可得到椭圆的方程;
(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.利用点到直线的距离公式和弦长公式即可得出圆心O到直线l1的距离和弦长|AB|,又l2⊥l1,可得直线l2的方程为x+kx+k=0,与椭圆的方程联立即可得到点D的横坐标,即可得出|PD|,即可得到三角形ABD的面积,利用基本不等式的性质即可得出其最大值,即得到k的值.
【解答】解:(1)由题意可得b=1,2a=4,即a=2.
∴椭圆C1的方程为;
(2)设A(x1,y1),B(x2,y2),D(x0,y0).
由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.
又圆的圆心O(0,0)到直线l1的距离d=.
∴|AB|==.
又l2⊥l1,故直线l2的方程为x+ky+k=0,联立,消去y得到(4+k2
)x2+8kx=0,解得,
∴|PD|=.
∴三角形ABD的面积S△==,
令4+k2=t>4,则k2=t﹣4,
f(t)===,
∴S△=,当且仅,即,当时取等号,
故所求直线l1的方程为.
22.(14分)(2013•浙江)已知a∈R,函数f(x)=x3﹣3x2+3ax﹣3a+3.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[0,2]时,求|f(x)|的最大值.
【分析】(1)求出原函数的导函数,求出函数取x=1时的导数值及f(1),由直线方程的点斜式写出切线方程;
(2)求出原函数的导函数,分a≤0,0<a<1,a≥1三种情况求|f(x)|的最大值.特别当0<a<1时,仍需要利用导数求函数在区间(0,2)上的极值,然后在根据a的范围分析区间端点值与极值绝对值的大小.
【解答】解:(1)因为f(x)=x3﹣3x2+3ax﹣3a+3,所以f′(x)=3x2﹣6x+3a,
故f′(1)=3a﹣3,又f(1)=1,所以所求的切线方程为y=(3a﹣3)x﹣3a+4;
(2)由于f′(x)=3(x﹣1)2+3(a﹣1),0≤x≤2.
故当a≤0时,有f′(x)≤0,此时f(x)在[0,2]上单调递减,故
|f(x)|max=max{|f(0)|,|f(2)|}=3﹣3a.
当a≥1时,有f′(x)≥0,此时f(x)在[0,2]上单调递增,故
|f(x)|max=max{|f(0)|,|f(2)|}=3a﹣1.
当0<a<1时,由3(x﹣1)2+3(a﹣1)=0,得,.
所以,当x∈(0,x1)时,f′(x)>0,函数f(x)单调递增;
当x∈(x1,x2)时,f′(x)<0,函数f(x)单调递减;
当x∈(x2,2)时,f′(x)>0,函数f(x)单调递增.
所以函数f(x)的极大值,极小值.
故f(x1)+f(x2)=2>0,.
从而f(x1)>|f(x2)|.
所以|f(x)|max=max{f(0),|f(2)|,f(x1)}.
当0<a<时,f(0)>|f(2)|.
又=
故.
当时,|f(2)|=f(2),且f(2)≥f(0).
又=.
所以当时,f(x1)>|f(2)|.
故.
当时,f(x1)≤|f(2)|.
故f(x)max=|f(2)|=3a﹣1.
综上所述|f(x)|max=.
参与本试卷答题和审题的老师有:caoqz;wubh2011;qiss;minqi5;lincy;邢新丽;wfy814;ywg2058;沂蒙松;sxs123(排名不分先后)
2017年2月3日
相关文档
- 2013年四川省高考数学试卷(文科)2021-07-0125页
- 2015年福建省高考数学试卷(文科)2021-07-0123页
- 2005年陕西省高考数学试卷(文)【附答2021-07-015页
- 2005年广西高考数学试卷Ⅱ(理)【附答2021-07-016页
- 2016年天津市高考数学试卷(理科)2021-07-0125页
- 2014年重庆市高考数学试卷(文科)2021-07-0123页
- 2015年全国统一高考数学试卷(理科)(新2021-07-0128页
- 【2020年高考数学预测题】上海市高2021-07-018页
- 2012年北京市高考数学试卷(理科)2021-07-0123页
- 2005年浙江省高考数学试卷(理科)【附2021-07-016页