• 72.71 KB
  • 2021-10-21 发布

湘教版七年级数学上册:第2章检测题

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
七上数学第 2 章检测题(XJ) 时间:120 分钟 满分:120 分 第Ⅰ卷 (选择题,共 36 分) 一、选择题(本大题共 12 小题,每小题 3 分,共 36 分,在每小题给出的四个选项中, 只有一项是符合题目要求的) 1.在下列各式:①-3;②ab=ba;③x;④2m-1>0;⑤1 x ;⑥8(x2+y2)中,代数式的 个数是( D ) A.1 个 B.2 个 C.3 个 D.4 个 2.“x 的 2 倍与 y 的差的平方的1 3 ”用代数式表示正确的是( D ) A.(2x2-y)·1 3 B.2x-1 3y2 C. 2x-1 3y 2 D.1 3(2x-y)2 3.下列各组单项式中不是同类项的是( D ) A.12a3y 与 2ya3 3 B.6a2mb 与-a2bm C.23 与 32 D.1 2x3y 与-1 2xy3 4.下列化简正确的是( D ) A.(3a-b)-(5c-b)=3a-2b-5c B.(2a-3b+c)-(2c-3b+a)=a+3c C.(a+b)-(3b-5a)=-2b-4a D.2(a-b)-3(a+b)=-a-5b 5.若多项式 2x3-8x2+x-1 与多项式 3x3+2mx2-5x+3 的和不含二次项,则 m 等于 ( C ) A.2 B.-2 C.4 D.-4 6.有一个两位数,十位数字是 a,个位数字是 b,若把它们的位置交换,得到新的两位 数是( C ) A.ab B.ba C.10b+a D.10a+b 7.下列说法错误的是( C ) A.0 和π都是单项式 B.35xy 的次数是 2,系数是 35 C.多项式 x3-x2y2+y3 是 3 次多项式 D.多项式 4x2-4x-1 的常数项为-1 8.若 A 和 B 都是二次三项式,则 A+B 的结果:①一定是四次式;②可能是三次式; ③可能是二次式;④可能是一次式;⑤可能是常数.其中正确结论的个数是( C ) A.1 B.2 C.3 D.4 9.现规定一种运算:a*b=ab+a-b,其中 a,b 为有理数,则 a*b+(b-a)*b 等于( B ) A.a2-b B.b2-b C.b2 D.b2-a 10.已知 x2+2xy=3,y2=2,则代数式 2x2+4xy+y2 的值是( A ) A.8 B.9 C.11 D.12 11.★如图,用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第 n 个“口” 字需用棋子( A ) 第 1 个“口” 第 2 个“口” 第 3 个“口” 第 n 个“口” A.4n 枚 B.(4n-4)枚 C.(4n+4)枚 D.n2 枚 12.★(宁波中考)把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个 底面为长方形(长为 m cm,宽为 n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用 阴影表示,则图②中两块阴影部分的周长和为( B ) A.4m cm B.4n cm C.2(m+n) cm D.4(m-n) cm 第Ⅱ卷 (非选择题,共 84 分) 二、填空题(本大题共 6 小题,每小题 3 分,共 18 分,将答案填在横线上) 13.若 8a2bn+1 与-1 3amb3 的和仍然是一个单项式,则m n =__1__. 14.当 x=-4 时,代数式-x3-4x2-2 与 x3+5x2+3x-4 的和是__-2__. 15.有理数 m 在数轴上的位置如图,则 m+|m-1|=__1__. 16.若(a2-a+4)+A=a2-3a-1,则 A=__-2a-5__. 17.★观察下面的一列单项式:x,-2x2,4x3,-8x4,…根据你发现的规律,第 n 个 单项式为__(-2)n-1xn__. 18.某市出租车收费标准是:起步价是 4 元,当路程超过 2 km 时,每增加 1 km 另外 收费 0.7 元.如果出租车行驶 Q km(Q>2),则司机应该收费__(0.7Q+2.6)__元. 三、解答题(本大题共 8 小题,满分 66 分,解答应写出文字说明,证明过程或演算步骤) 19.(8 分)计算: (1)(5a+4c+7b)+(5c-3b-6a); 解:原式=5a+4c+7b+5c-3b-6a =-a+4b+9c; (2) 2x2-1 2 +3x -4 x-x2+1 2 . 解:原式=2x2-1 2 +3x-4x+4x2-2 =6x2-x-5 2. 20.(10 分)先化简,再求值: (1)(3a2b-2a2b)-(ab-4a2)+(2ab-a2b),其中 a=-2,b=-3; 解:原式=3a2b-2a2b-ab+4a2+2ab-a2b=4a2+ab, 当 a=-2,b=-3 时, 原式=4× (-2)2+(-2)× (-3)=22; (2)3xy2-2 xy-3 2x2y +(3x2y-2xy2),其中 x=-4,y=1 2. 解:原式化简为 xy2+6x2y-2xy; 当 x=-4,y=1 2 时, 原式=51. 21.(7 分)如果 A=3x2-xy+y2,B=2x2-3xy-2y2,那么 A-[B-(-2B+A)]等于多少? 当 x=-1 2 ,y=1 时,它的值等于多少? 解:A-[B-(-2B+A)]=A-(B+2B-A)=A-3B+A=2A -3B=2(3x2-xy+y2)-3(2x2-3xy-2y2)=6x2-2xy+2y2-6x2+9xy+6y2=8y2+7xy. 当 x=-1 2 ,y=1 时,原式=8× 12+7× -1 2 × 1=9 2. 22.(7 分)如果关于字母 x 的二次多项式-3x2+mx+nx2-x+3 的值与 x 的取值无关, 求(m+n)(m-n)的值. 解:-3x2+mx+nx2-x+3=(n-3)x2+(m-1)x+3. 依题意得 m=1,n=3. 所以(m+n)(m-n)=(1+3)(1-3)=-8. 23.(8 分)某房间窗户的装饰物如图,它们由两个四分之一圆组成(半径相同). (1)请用代数式表示窗户能射进阳光部分的面积; (2)若 a=1,b=2 3 ,请求出窗户能射进阳光部分的面积的值(取π≈3). 解:(1)窗户能射进阳光部分的面积为 ab- 1 2b 2 π 2 =ab-πb2 8 ; (2)若 a=1,b=2 3 ,则窗户能射进阳光部分的面积为 1× 2 3 - 1 2 × 2 3 2 × 3 2 =1 2. 24.(8 分)某市的出租车的起步价为 5 元(行驶不超过 3 千米),以后每增加 1 千米加收 1.5 元.某人乘出租车行驶 x 千米(x>3)的路程,所需费用是多少?若 A,B 两地相距 10 千 米,该人身上仅有 15 元钱,他想从 A 地出发去 B 地,则乘出租车费用够吗?为什么? 解:5+1.5(x-3)=1.5x+0.5(元), 当 x=10 时,1.5x+0.5=15.5(元), 而 15< 15.5,所以乘出租车费用不够. 25.(8 分)父母带着孩子一家三口去旅游,甲旅行社报价为大人每人 a 元,小孩为a 2 元; 乙旅行社的报价均为 a 元,但三人均可按报价的 8 折收费,请问哪个旅行社收费高一些,高 多少元? 解:由题意有:甲旅行社收费 2a+a 2 元,乙旅行社收费(3a×0.8)元. 2a+a 2 =5a 2 =2.5a, 3a×0.8=2.4a,2.5a>2.4a, 2.5a-2.4a=0.1a. 甲旅行社收费高一些,高 0.1a 元. 26.(10 分)观察图中的棋子: (1)按照这样的规律摆下去,第 4 个图形中棋子的个数是多少? (2)用含 n 的代数式表示第 n 个图形中棋子的个数; (3)求第 20 个图形中棋子的个数. 解:(1)第 4 个图形中棋子的个数是 13; (2)第 n 个图形中棋子的个数是 3n+1; (3)当 n=20 时,3n+1=3× 20+1=61,所以第 20 个图形中棋子的个数是 61 个.