• 154.55 KB
  • 2022-03-31 发布

七年级下册数学课件《平方差公式 平方差公式的认识》 (2)_北师大版

  • 20页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
2.2乘法公式第2章整式的乘法导入新课讲授新课当堂练习课堂小结七年级数学下(XJ)教学课件2.2.1平方差公式 学习目标1.理解并掌握平方差公式的推导和应用.(重点)2.理解平方差公式的结构特征,灵活应用平方差公式解决问题.(难点) 导入新课多项式与多项式是如何相乘的?(x+3)(x+5)=x2+5x+3x+15=x2+8x+15.(a+b)(m+n)=am+an+bm+bn复习引入 讲授新课平方差公式一探究发现5米5米a米(a-5)(a+5)米相等吗?原来现在a2-25(a+5)(a-5)面积变了吗?a米 ①(x+1)(x-1);②(m+2)(m-2);③(2m+1)(2m-1);④(5y+z)(5y-z).计算下列多项式的积,你能发现什么规律?算一算:看谁算得又快又准. ②(m+2)(m-2)=m2-22③(2m+1)(2m-1)=4m2-12④(5y+z)(5y-z)=25y2-z2①(x+1)(x-1)=x2-1,想一想:这些计算结果有什么特点?x2-12m2-22(2m)2-12(5y)2-z2 (a+b)(a−b)=a2−b2两数和与这两数差的积,等于这两数的平方差.公式变形:1.(a–b)(a+b)=a2-b22.(b+a)(-b+a)=a2-b2平方差公式归纳总结 平方差公式注:这里的两数可以是两个单项式也可以是两个多项式等.(a+b)(a-b)=(a)2-(b)2相同为a相反为b适当交换合理加括号 练一练:口答下列各题:(l)(-a+b)(a+b)=_________.(2)(a-b)(b+a)=__________.(3)(-a-b)(-a+b)=________.(4)(a-b)(-a-b)=_________.a2-b2a2-b2b2-a2b2-a2 (1+x)(1-x)(-3+a)(-3-a)(0.3x-1)(1+0.3x)(1+a)(-1+a)填一填:aba2-b21x-3a12-x2(-3)2-a2a1a2-120.3x1(0.3x)2-12(a-b)(a+b) (a+b)(a–b)=a2-b2例1计算:(-x+2y)(-x-2y).解:原式=(-x)2-(2y)2=x2-4y2.注意:1.先把要计算的式子与公式对照;2.哪个是a?哪个是b?典例精析 例2运用平方差公式计算:(1)(3x+2)(3x-2);(2)(b+2a)(2a-b).解:(1)(3x+2)(3x-2)=(3x)2-22=9x2-4;(2)(b+2a)(2a-b)=(2a+b)(2a-b)=(2a)2-b2=4a2-b2. 例3计算:(1)102×98;(2)(y+2)(y-2)–(y-1)(y+5).解:(1)102×98(2)(y+2)(y-2)-(y-1)(y+5)=1002-22=10000–4=(100+2)(100-2)=9996=y2-22-(y2+4y-5)=y2-4-y2-4y+5=-4y+1. 当堂练习1.下面各式的计算对不对?如果不对,应当怎样改正?(1)(x+2)(x-2)=x2-2(2)(-3a-2)(3a-2)=9a2-4不对改正:(1)(x+2)(x-2)=x2-4不对改正方法1:(-3a-2)(3a-2)=-[(3a+2)(3a-2)]=-(9a2-4)=-9a2+4改正方法2:(-3a-2)(3a-2)=(-2-3a)(-2+3a)=(-2)2-(3a)2=4-9a2 (1)(a+3b)(a-3b);=4a2-9;=4x4-y2.=(2a+3)(2a-3)=a2-9b2;=(2a)2-32=(-2x2)2-y2=(50+1)(50-1)=502-12=2500-1=2499;=(9x2-16)-(6x2+5x-6)=3x2-5x-10.=(a)2-(3b)2(2)(3+2a)(-3+2a);(3)51×49;(5)(3x+4)(3x-4)-(2x+3)(3x-2).(4)(-2x2-y)(-2x2+y);2.利用平方差公式计算: 3.计算:20152-2014×2016.解:20152-2014×2016=20152-(2015-1)(2015+1)=20152-(20152-12)=20152-20152+12=1 4.利用平方差公式计算:(a-2)(a+2)(a2+4)解:原式=(a2-4)(a2+4)=a4-16. 5.化简:(x-y)(x+y)(x2+y2)(x4+y4).解:原式=(x2-y2)(x2+y2)(x4+y4)=(x4-y4)(x4+y4)=x8-y8. 课堂小结平方差公式内容注意两个数的和与这两个数的差的积,等于这两个数的平方差1.符号表示:(a+b)(a-b)=a2-b22.紧紧抓住“一同一反”这一特征,在应用时,只有两个二项式的积才有可能应用平方差公式;对于不能直接应用公式的,可能要经过变形才可以应用 见《学练优》本课时练习课后作业