- 540.32 KB
- 2022-03-31 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
4.5多边形和圆的初步认识北师大版义务教育课程标准实验教科书数学七年级上册
各位评委老师:大家好!我说的课内容是北师大版义务教育教科书七年级数学上册第四章第五节,题目是《多边形和圆的初步认识》,下面我将说学情、说教学方法、学法、教学目标、教学过程和板书设计五个方面对本课进行阐述。
这是一节平面图形识别课,学生虽然在小学已认识了许多平面图形,但是本节课要求学生从生活中抽象出数学图形,从数学角度分析问题,获得概念,利用概念和性质解决简单问题,这对学生有一定难度。一、说学情
本节课的重点是让学生体验从生活中抽象出数学图形的过程,并利用概念和性质解决简单问题。教学中可以借助计算机提供大量丰富多彩的生活素材,增加趣味性和实用性,引导学生自主发现问题、探究问题、解决问题,体会数学与生活的联系。二、说教法学法
三、教学目标:1、经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩,在丰富的活动中发展学生有条理的思考和表达能力;2、在具体情境中认识多边形、正多边形、圆、扇形,根据扇形和圆的关系求扇形圆心角的度数。重点:在具体情境中认识多边形、圆、扇形及相关概念,明确多边形边数与对角线条数的关系,会根据扇形和圆的关系求扇形圆心角的度数。难点:从生活中抽象出数学图形,并从数学角度分析问题获得概念,利用概念和性质解决简单问题。
1、教学过程环节一图片欣赏归纳概念环节二观察验证获得新知环节三动手操作再探新知环节四小结反思巩固提高
环节一图片欣赏归纳概念问题1:(提前写好课题)生活中有很多美丽的图片,我们一起来欣赏一下(在选择图片时针对多边形情形)。请细心观察,其中有哪些你熟悉的平面图形?在三角形、四边形、五边形等图形中,我们从最简单的图形——三角形开始研究。问题2:(给出三条线段)请看,用这三条线段绘制一个三角形,(三条线段在同一直线上)这时能组成三角形吗?就是要求三条线段不在同一直线上。下面连接,(三条线段一端连在一起)这样可以吗?你能比划一下吗?就是首尾顺次相连。(不封闭)这样可以吗?就是要封闭图形。由此得到三角形是由三条不在同一直线上的线段首尾顺次相连组成的封闭平面图形。(生叙述师补充后板书)四、教学过程
问题3:(给出几个四边形)类似你能试着给四边形下个定义吗?五边形就是五条,n边形就是n条。现在给三角形、四边形、五边形、...、n边形一起下个定义,只需替换三、四、五、...、n,我们用“若干”这个词,于是得到:由若干条不在同一直线上的线段首尾顺次相连组成的封闭平面图形,这样的图形叫做多边形。(师完善板书)(师在白板上画出图形)请看,这是一个五边形,五个点标上字母ABCDE,此时这个五边形记为“五边形ABCDE”(师板书)或“五边形BCDEA”等,要求字母必须按顺序,如不能记为“五边形BEACD”。点A、B、C、D、E称为多边形的顶点;线段AB、BC、CD、DE、EA称为多边形的边;∠A、∠B、∠C、∠D、∠E称为多边形的内角(简称多边形的角);点A和点B相邻,连接相邻顶点的线段如AB是边,连接不相邻两个顶点的线段(师用紫色粉笔示范作图)如AC、AD称为多边形的对角线。
问题4:图中还有其他对角线吗?(生答师画图)问题5:注意观察,在这个五边形中,从一个顶点如点A出发有几条对角线?从点B出发呢?从点C呢?从点D、点E呢?我们发现五边形从一个顶点出发有两条对角线。那这两条对角线将五边形分成几个三角形呢?为了便于观察,我们保留对角线AC、AD,擦除其他对角线(师演示擦除过程),此时对角线AC、AD将五边形分成几个三角形呢?(生口答)
多边形几何图形顶点数边数内角数过一个顶点对角线条数过一个顶点对角线将多边形分割成三角形数三角形四边形五边形六边形.....................n边形问题6:多边形顶点个数、内角个数、对角线条数和边数有关系吗?请完成下表。(师生一起完成前三列,最后两列的最后一行由学生合作完成,要求小组交流1分钟,每个小组选派一名组长代表本组发言,师追问如何得到?还有其他方法吗?)
跟踪练习1:过某个多边形一个顶点的所有对角线,将这个多边形分成5个三角形,这个多边形是几边形?(生口答)环节二观察验证获得新知问题7:多边形中有一类多边形很特殊,(几何画板演示)请观察下面几个多边形,它们的边、角有什么特点?(生可能回答:各边相等,各角相等)。师追问:是这样吗?一起来验证一下(几何画板演示度量数据)。将各边相等、各角相等的多边形叫做正多边形(师板书)。图中的多边形分别是正三角形(也称等边三角形)、正四边形(也称正方形)、正五边形。请判断:
跟踪练习2:判断:(1)各边相等的多边形是正多边形;()(2)各角相等的多边形是正多边形。()你认为错误,能举出反例吗?(几何画板演示动态过程)因此定义中各边相等、各角相等两个条件缺一不可。
环节三动手操作再探新知问题8:下面图形中有我们熟悉的图形吗?你有哪些方法画一个圆?老师现在有一根细绳和粉笔,你能用它画出一个圆吗?(两位同学合作在黑板上完成)问题9:仔细观察两位同学画圆过程,你能发现圆是如何形成的呢?(几何画板动态演示画圆过程)这根细绳和粉笔可以看作一条线段,其中一个端点固定,这条线段绕着它固定的端点旋转一周,另一个端点形成圆。由此得到:一条线段绕着它固定的一个端点旋转一周,另一个端点形成的平面图形叫做圆(师复述并板书),固定的端点O称为圆心,线段OA称为半径,圆上任意两点A、B间的部分叫做圆弧,简称弧,记作AB,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧端点的两条半径OA、OB所组成的图形叫做扇形;顶点在圆心的角叫做圆心角(师在图中标注字母O、A、B)。除了测量,如何求扇形的圆心角度数呢?请思考下题。例将一个圆分割成三个扇形,它们的圆心角的度数比为1:2:3,求这三个扇形的圆心角的度数。分析:(鼓励生回答)这三个圆心角刚好组成一个周角为360°,因此将360°等分1+2+3=6份,三个圆心角分别占1份、2份、3份。(师板书过程)
跟踪练习3:将一个圆分成三个大小相同的扇形,则每个圆心角的度数是________,每个扇形的面积是圆面积的______.(生口答)跟踪练习4:把一个圆分成三个扇形,分别占整个圆的20﹪、30﹪、50﹪,试着画出这三个扇形.(生说思路师演示画图过程,画好图后,师量出半径)你能试着求出这三个扇形的面积吗?(生完成后投影展示)
环节四小结反思巩固提高小结:你有哪些收获?还有什么困惑?作业:习题4.51、2题;复习题5、6题板书设计
4.5多边形和圆的初步认识三、圆一、多边形例二、正多边形板书设计
感谢聆听!