• 1.86 MB
  • 2022-03-31 发布

北师大版七年级数学上册知识点及关键重点习题+新北师大版七年级数学上册导学案

  • 46页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
北师大版七年级数学上册知识点及关键重点习题+新北师大版七年级数学上册导学案北师大版七年级数学上册知识点前言:七年级上知识点很简单,主要是衔接作用,很多知识点在六年级涉及过,现在是对六年级的加深与拓展。重点难点章节有三个:第二章有理数及其运算、第三章整式及其加减、第五章一元一次方程。第一章丰富的图形世界备注:本单元两个易错点:1、图形的展开与折叠2、“三视图”判断图形个数1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。2、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分)锥圆锥棱锥3、点、线、面、体(1)几何图形的组成 点:线和线相交的地方是点,它是几何图形中最基本的图形。线:面和面相交的地方是线,分为直线和曲线。面:包围着体的是面,分为平面和曲面。体:几何体也简称体。(2)点动成线,线动成面,面动成体。4、常见的几何体及其特点长方体:有8个顶点,12条棱,6个面,且各面都是长方形。(正方形是特殊的长方形),正方体是特殊的长方体。棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。圆柱的表面展开图是由两个相同的圆形和一个长方形连成。圆锥:有一个底面和一个侧面(曲面)。侧面展开图是扇形,底面是圆。球:由一个面(曲面)围成的几何体。5、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。侧棱:相邻两个侧面的交线叫做侧棱。n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。6、正方体的平面展开图:11种3—3型2—2—2型 总结规律:一线不过四,田凹应弃之;相间、Z端是对面,间二、拐角邻面知。7、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形其他几何体的截面形状:正方体:三角形、正方形、长方形、梯形、五边形、六边形圆柱:圆、长方形、(正方形)、……圆锥:圆、三角形、……球:圆8、三视图物体的三视图指主视图、俯视图、左视图。 主视图:从正面看到的图,叫做主视图。左视图:从左面看到的图,叫做左视图。俯视图:从上面看到的图,叫做俯视图。第一章有理数及其运算备注:1*、数轴是新知识很多地方用到2*、去绝对值与绝对值的几何意义很重要,有些学生在去绝对值和利用绝对值几何意义做题时比较容易出错(去绝对值的主要数学思想是“分情况讨论”这也是贯穿初高中的一个重要数学思想)3*、有理数混合运算中去去括号变号很多同学容易在这块丢分。1、有理数的分类整数和分数统称为有理数。因为有限小数和无限循环小数可以化为分数,所以把有限小数和无限循环小数都看作分数。正有理数整数有理数零有限小数和无限循环小数或有理数负有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零①在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等.②相反数是成对出现的,不能单独存在,单独的一个数不能说是相反数。 3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。解题时要真正掌握数形结合的思想,并能灵活运用。4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。绝对值的有关性质①对任意有理数a,都有|a|≥0;②若|a|=0,则a=0;③若|a|=|b|,则a=b或a=-b;④若|a|=b(b>0),则a=±b;⑤若|a|+|b|=0,则a=0且b=0;⑥对任意有理数a,都有|a|=|-a|.6、有理数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。7、有理数的运算:(1)五种运算:加、减、乘、除、乘方多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加。 异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。一个数同0相加,仍得这个数。互为相反数的两个数相加和为0。有理数减法法则:减去一个数,等于加上这个数的相反数!有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数与0相乘,积仍为0。有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何非0的数都得0。注意:0不能作除数。有理数的乘方:求n个相同因数a的积的运算叫做乘方。a2是重要的非负数,即a2≥0;若a2+|b|=0Û则a=0,b=0;据规律底数的小数点移动一位,平方数的小数点移动二位.注意:①一个数可以看作是本身的一次方,如5=51;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数;③任何数的偶数次幂都是非负数;④(除0以外任何数的0次方都得1)1的任何次幂都得1,0的任何次幂(除0次)都得0;⑤-1的偶次幂得1;-1的奇次幂得-1; ⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。(2)有理数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。(3)运算律加法交换律加法结合律乘法交换律乘法结合律乘法对加法的分配律变形公式8、科学记数法一般地,一个大于10的数可以表示成的形式,其中,n是正整数,这种记数方法叫做科学记数法。(n=整数位数-1)第三章整式及其加减备注:这章算是这册比较难的一个知识点。一是对单项式、多项式的理解,其次是对同类项的理解和计算。容易出错的地方大多在化简计算,有几点:1、是化简计算过程中去括号变号。2、化简求值中“整体思想”的运用。3、化简计算中一个字母表示另个字母代入换算。知识点一、字母表示数1、字母可以表示任何数,用字母表示数的运算律和公式法则; 加法交换律a+b=b+a加法结合律a+b+c=a+(b+c)乘法交换律ab=ba乘法结合律(ab)c=a(bc)乘法分配律a(b+c)=ab+ac用字母表示计算公式:长方形的周长2(a+b),面积ab(a、b分别为长、宽)正方形的周长4a,面积a2(a表示边长)长方体的体积abc,表面积2ab+2bc+2ac(a、b、c分别为长、宽、高)正方体的体积a3,表面积6a2(a表示棱长)圆的周长2πr,面积πr2(r为半径)三角形的面积×ah(a表示底边长,h表示底边上的高)1、在同一问题中,同一字母只能表示同一数量,不同的数量要用不同的字母表示。2、用字母表示实际问题中某一数量时,字母的取值必须使这个问题有意义,并且符合实际。4、注意书写格式的规范:(1)表示数与字母或字母与字母相乘时乘号,乘号可以写成“·”,但通常省略不写;数字与数字相乘必须写乘号;(2)数和字母相乘时,数字应写在字母前面;(3)带分数与字母相乘时,应把带分数化成假分数;(4)除法运算写成分数形式,分数线具“÷”号和“括号”的双重作用。(5)在代数式的运算结果中,如有单位时,结果是积或商直接写单位;结果是和差加括号后再写单位。典型例题: 例题1.有一大捆粗细均匀的钢筋,现要确定其长度,先称出这捆钢筋的总质量为m千克,再从中截取5米长的钢筋,称出它的质量为n千克,那么这捆钢筋的总长度为()米A、B、C、D、(-5)例题2.用代数式表示“2a与3的差”为()A.2a-3B.3-2aC.2(a-3)D.2(3-a)例题3.如图1―3―1,轴上点A所表示的是实数a,则到原点的距离是()A、aB.-aC.±aD.-|a|例题4.已知a=x+20,b=x+19,c=x+21,那么代数式a2+b2+c2-ab-bc-ac的值为()A、4B、3C、2D、1练习:1、温度由t℃下降3℃后是_____________℃.2、飞机每小时飞行a千米,火车每小时行驶b千米,飞机的速度是火车速度的_______倍.3、无论a取什么数,下列算式中有意义的是()A.、B.C.D.4、全班同学排成长方形长队,每排的同学数为a,排数比每排同学数的3倍还多2,那么全班同学数为()A.B.C.D.5、轮船在A、B两地间航行,水流速度为千米/时,船在静水中的速度为千米/时,则轮船逆流航行的速度为__________千米/时 6、甲、乙、丙三家超市为了促销一种定价均为元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要想购买这种商品最划算,应到的超市是()(A)甲(B)乙(C)丙(D)乙或丙7、下列说法中:①一定是负数;②一定是正数;③若,则三个有理数中负因数的个数是0或2,其中正确的序号是8、设三个连续整数的中间一个数是,则它们三个数的和是9、设三个连续奇数的中间一个数是,则它们三个数的和是10、设为自然数,则奇数表示为;偶数表示为;能被5整除的数为;被4除余3的数为二、代数式1、代数式:用基本运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫代数式。如:n-2、0.8a、2n+500、abc、2ab+2bc+2ac(单独一个数或一个字母也是代数式)注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。※代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt;②数字与字母相乘时,数字应写在字母前面,如4a;③带分数与字母相乘时,应先把带分数化成假分数,如应写作; ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米。例:下列不是代数式的是()2、单项式:表示数与字母的积的形式的代数式叫单项式。单独一个数或一个字母也是单项式。其中的数字因数(连同符号)叫单项式的系数,所有的字母的指数的和叫单项式的次数。注意:1.单独的一个数或一个字母也是单项式;2.单独一个非零数的次数是0;3.书写时,当单项式的系数为1或-1时,这个“1”应省略不写,如-ab的系数是-1,ab的系数是1。4.是数字,不是字母。例:的系数是;如的系数是;如的系数是;3、多项式:几个单项式的和叫多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。例:代数式有项,第二项的系数是,第三项的系数是,第四项的系数是4、单项式多项式统称为整式。整式是代数式的一部分,在代数式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。 练习:1、某商品售价为元,打八折后又降价20元,则现价为_____元2、橘子每千克元,买10以上可享受九折优惠,则买20千克应付_________元钱.3、如图,图1需4根火柴,图2需____根火柴,图3需____根火柴,……图需____根火柴。(图1)(图2)(图n)4、温度由t℃下降3℃后是_____________℃.5、飞机每小时飞行a千米,火车每小时行驶b千米,飞机的速度是火车速度的_______倍.6、无论a取什么数,下列算式中有意义的是()A.B.C.D.7、全班同学排成长方形长队,每排的同学数为a,排数比每排同学数的3倍还多2,那么全班同学数为()A.B.C.D.8、填空的系数为_______,次数为_______:的次数为______;的系数是;的系数是;的系数是;代数式有项,第二项的系数是,第三项的系数是,第四项的系数是9、下列不是代数式的是() 三、合并同类项1、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。注意:①同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。②同类项与系数无关,与字母的排列顺序无关;③几个常数项也是同类项。如:100a和200a,240b和60b,-2ab和10ba2、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。合并同类项法则:(1)写出代数式的每一项连同符号,在其中找出同类项的项;(2)合并同类项:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.(3)不同种的同类项间,用“+”号连接(4)没有同类项的项,连同前面的符号一起照抄如:合并同类项3x2y和5x2y,字母x、y及x、y的指数都不变,只要将它们的系数3和5相加,即3x2y+5x2y=(3+5)x2y=8x2y.3.合并同类项的步骤:(1)准确的找出同类项(2)运用加法交换律,把同类项交换位置后结合在一起(3)利用法则,把同类项的系数相加,字母和字母的指数不变(4)写出合并后的结果4.注意:(1)不是同类项不能合并(2)求代数式的值时,如果代数式中含有同类项,通常先合并同类项再代入数值进行计算.例1.判断下列各组中的两个项是不是同类项:(1)a2b和-a2b(2)2m2np和-pm2n(3)0和-1例2.下列各组中:①;② ;③;④;⑤与;⑥与⑦与,同类项有(填序号)例3.如果xky与—x2y是同类项,则k=______,xky+(-x2y)=________.例4.直接写出下列各式的结果:(1)-xy+xy=_______;(2)7a2b+2a2b=________;(3)-x-3x+2x=_______;(4)x2y-x2y-x2y=_______;(5)3xy2-7xy2=________.例5.合并下列多项式中的同类项.(1)4x2y-8xy2+7-4x2y+10xy2-4;(2)a2-2ab+b2+a2+2ab+b2.(3)(4)例6.若,,则练习:1、单项式与是同类项,则,2、下列各组中:①;②;③;④;⑤与;⑥与⑦与,同类项有(填序号)3、合并同类项:①②4、若,,则 四、去括号法则1、根据去括号法则去括号:(1)括号前是“+”号,把括号和前面的“+”号去掉,括号里的各项的符号都不改变。(2)括号前是“-”号,把括号和前面的“-”号去掉,括号里的各项都要改变符号。2、根据去括号法则中乘法分配律的应用去括号:若括号前有因式,应先利用乘法分配律展开,同时注意去括号时符号的变化规律。3、多重括号的化简原则:(1)由里向外逐层去掉括号(2)由外向里逐层去掉括号注意:1、添括号法则添“+”号和括号,添到括号里的各项符号都不改变;添“-”号和括号,添到括号里的各项符号都要改变。2、整式的运算:整式的加减法:(1)去括号;(2)合并同类项。例1、一个两位数,十位数字是,个位数字比十位数字2倍少3,这个两位数是例2、去括号,合并同类项(1)-3(2s-5)+6s(2)3x-[5x-(x-4)](3)6a2-4ab-4(2a2+ab)(4) (5)(6)(7)(8)(9)(10)练习:1、化简:①②2、一个两位数,十位数字是,个位数字比十位数字2倍少3,这个两位数是3、化简:(1)(2)(3)(4)五、代数式求值——先化简,再求值代数式求值:1、用具体的数值代替代数式中的字母,按照代数式的运算关系计算,所得的结果是代数式的值。2、求代数式的值时应注意以下问题:(1)严格按求值的步骤和格式去做. (2)一个代数式中的同一个字母,只能用同一个数值代替,若有多个字母,代入时要注意对应关系,千万不能混淆.(3)在代入值时,原来省略的乘号要恢复,而数字和其他运算符号不变(4)字母取负数代入时要添括号(5)有乘方运算时,如果代入的数是分数或负数,要加括号例1当x=,y=-3时,求下列代数式的值:(1)3x2-2y2+1;(2)例2当时,求代数式的值例3已知互为倒数,互为相反数,求代数式的值例4化简,求值:①,其中,②,其中经典例题例题1.若abx与ayb2是同类项,下列结论正确的是()A.X=2,y=1B.X=0,y=0C.X=2,y=0D、X=1,y=1例题2.2x-x等于()A.xB.-xC.3xD.-3x例题3.x-(2x-y)的运算结果是()A.-x+yB.-x-yC.x-yD.3x-y 练习:1、当时,求代数式的值2、已知互为倒数,互为相反数,求代数式的值3、已知,求的值。4、化简,求值:①,其中,②,其中5、已知,,求六、探索规律列代数式例题1.观察下列数表:根据数表所反映的规律,猜想第6行与第6列的交叉点上的数应为________,第n行与第n列交叉点上的数应为_________(用含有n的代数式表示,n为正整数)例题2.观察下列各等式: (1)以上各等式都有一个共同的特征:某两个实数的一等于这两个实数的___________;如果等号左边的第一个实数用x表示,第二个实数用y表示,那么这些等式的共同特征可用含x,y的等式表示为_____________________.(2)将以上等式变形,用含y的代数式表示x为_________________;(3)请你再找出一组满足以上特征的两个实数,并写出等式形式:__________________例题3.一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分如图1―3―3所示,则这串珠子被盒子遮住的部分有_____颗.第四章平面图形及其位置关系备注:这一章重要是为后面几何打基础:1、重点在平行的性质与证明。2、同旁内角、内错角、同位角的定义(这个有些学生在开始的时候会出现小失误后面没什么问题)3、垂线的性质与判定线段、射线、直线1、线段: 绷紧的琴弦,人行横道线都可以近似的看做线段。线段有两个端点。2、射线:将线段向一个方向无限延长就形成了射线。射线有一个端点。3、直线:将线段向两个方向无限延长就形成了直线。直线没有端点。4、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。一个点可以用一个大写字母表示。一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示。一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面)。一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示。名称图形表示方法端点长度直线直线AB(或BA)直线l无端点无法度量射线射线OM1个无法度量线段线段AB(或BA)线段l2个可度量长度5、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。②点在直线外,或者说直线不经过这个点。 6、直线的性质(1)直线公理:经过两个点有且只有一条直线。(2)过一点的直线有无数条。(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。(4)直线上有无穷多个点。(5)两条不同的直线至多有一个公共点。7、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。(①点到直线的垂线段的长叫做点到直线的距离;②平行线间垂线段的长叫做平行线间的距离。)(3)线段的中点到两端点的距离相等。(4)线段的大小关系和它们的长度的大小关系是一致的。8、线段的中点:点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM=BM=1/2AB(或AB=2AM=2BM)。9、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。 11、角的表示角的表示方法有以下四种:①用数字表示单独的角,如∠1,∠2,∠3等。②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。12、角的度量角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。把1°的角60等分,每一份叫做1分的角,1分记作“1’”。把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。1°=60’,1’=60”13、角的性质(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。(2)角的大小可以度量,可以比较(3)角可以参与运算。时针问题:(小学奥数)时针每小时30°,每分钟0.5°;分针每分钟6°;时针与分针每分钟差5.5°.时针与分针夹角=分×5.5°—时×30°(分针靠近12点)时针与分针夹角=时×30°—分×5.5°(时针靠近12点) 若结果大于180°,另一角度用360°减这个角度。经过多少时间重合、垂直、在一条线上,用求出的重合、垂直、在一条线上的时间减去现在的时间。追及问题还可用追及度数/5.5。14、角的平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。15、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n-3)条对角线,把这个n边形分割成(n-2)个三角形。n边形内角和等于(n-2)×180°。正多边形(每条边都相等,每个内角都相等的多边形)的每个内角都等于(n-2)×180°/n。过n边形一个顶点有(n-3)条对角线,n边形共(n-3)×n/2条对角线16、圆:(1)平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。(2)圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;(3)由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。(4)顶点在圆心的角叫做圆心角。15、平行线: 在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。16、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。补充平行线的判定方法:(1)平行于同一条直线的两直线平行。(2)在同一平面内,垂直于同一条直线的两直线平行。(3)平行线的定义。17、垂直:两条直线相交成直角,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。18、垂线的性质:性质1:平面内,过一点有且只有一条直线与已知直线垂直。性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。19、点到直线的距离:过A点作l的垂线,垂足为B点,线段AB的长度叫做点A到直线l的距离。20、同一平面内,两条直线的位置关系:相交或平行。 第五章一元一次方程备注:解方程在小学已经学了很多了,现在算是加深与拓展。比如增加了一元一次方程方程的概念、含绝对值方程。主要在两个方面:1、解方程,主要是化简出现问题(去分母、去括号、移项变号等)主要是粗心,知道怎么做不过老是会忘2、方程运用题,重要是找等量关系列方程问题1、方程含有未知数的等式叫做方程。2、方程的解能使方程左右两边相等的未知数的值叫做方程的解。3、等式的性质(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。(2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。5、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.6、解一元一次方程的一般步骤: (1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)(4)合并同类项(5)将未知数的系数化为16、列一元一次方程解应用题步骤:找等量关系,设未知数,列方程,解方程,检验解的正确性,作出回答。7、找等量的方法:(1)读题分析法::多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列等量关系式。(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找等量关系是解决问题的关键。(3)常用公式也可作为等量关系8、列方程解应用题的常用公式:(1)行程问题:距离=速度×时间;(2)工程问题:工作量=工效×工时;(3)比率问题:部分=全体×比率;(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价×折×,售价=进价×(1+提高率),利润=售价-成本,利润=利润率×成本;(6)本息和=本金+利息;利息=本金×利率×期数(7)原量×(1+增长率)=现量;原量×(1-下降率)=现量(只有1次增减)(8)周长、面积、体积问题:C圆=2πR;S圆=πR2;C长方形=2(a+b);S长方形=ab;C正方形=4a;S正方形=a2;S环形=π(R2-r2);V长方体=abc;V正方体=a3;V圆柱=πR2h;V圆锥=πR2h。第六章数据的收集与整理1、普查和抽样调查(1)从事一个统计活动大致要经历确定任务,收集数据,整理数据等过程。我们经常通过调查、试验等方式获得数据信息。项目很大时,还可以通过查阅报纸、相关文献或上网的方式。(2)为某一特定目的而对所有考察对象进行的全面调查叫做普查。所要考察的对象的全体称为总体。 组成总体的每一个考察对象称为个体。(3)①总体的个数数目较多,普查的工作量较大;②有时受客观条件的限制,无法对所有个体进行普查;③有时调查具有破坏性,不允许普查。人们往往从总体中抽取部分个体进行调查,这种调查称为抽样调查。抽样调查时,从总体中抽取的一部分个体叫做总体的一个样本。样本容量:样本含有个体的数目。(4)随机调查,就是按机会均等的原则进行调查,即总体中每个个体被选中的可能性都相等。随机调查不是调查方法。(5)抽样调查的优点是调查范围小,节省时间、人力、物力和财力。缺点是调查结果往往不如普查得到的结果准确。抽样时要注意样本的代表性和广泛性(随机性,真实性)。2、扇形统计图及其画法:(1)扇形统计图:利用圆与扇形来表示总体与部分的关系,即圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(2)画法:①计算不同部分占总体的百分比:各项数量/总数×100%。(在扇形中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360的比圆心角度数/3600×100%)。②计算各个扇形的圆心角(顶点在圆心的角叫做圆心角)的度数。圆心角度数=3600×百分比③在圆中画出各个扇形,并标上百分比。3、频数分布直方图 (1)频数分布直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组,画在横轴上,纵轴表示各组的频数。如果样本中数据较多,数据的差也比较大时,频数分布直方图能更清晰、更直观地反映数据的整体状况。(2)频数分布直方图的制作步骤:①找出所有数据中的最大值和最小值,并算出它们的差(极差)。②决定组距和组数(组数:把全体样本分成的组的个数称为组数,当数据在50~100之间时,分组的数量在5-12之间较为适宜;组距:把所有数据分成若干个组,每个小组的两个端点的距离〈注意分点归属问题〉。)  ③确定分点  ④列出频数分布表.⑤画频数分布直方图.(3)条形图和直方图的区别①条形图是用条形的高度表示频数的大小,而直方图实际上是用长方形的面积表示频数,当长方形的宽相等的时候,把组距看成“1”,用矩形的的高表示频数;  ②条形图中,横轴上的数据是孤立的,是一个具体的数据,而直方图中,横轴上的数据是连续的,是一个范围;③条形图中,各长方形之间有空隙,而直方图中,各长方形是靠在一起的,中间无空隙。4、各种统计图的优缺点①条形统计图:能清楚地表示出每个项目的具体数目。②折线统计图:能清楚地反映事物的变化情况。 ③扇形统计图:能清楚地表示出各部分在总体中所占的百分比。为了较直观比较直观地表达两个统计量的变化速度绘制折线统计图时应注意纵、横坐标同一单位长度所表示的量一定要一致。为了较直观地反映几个统计量之间的比例关系绘制条形统计图时应注意纵轴从0开始。1.1.1生活中的立体图形课时:第1课时【学习目标】1、知识与技能:在具体的情景中认识圆柱、圆锥、长方体、正方体、棱柱、球,并能用自己的语言描述它们的某些特征。2、过程与方法:经历从现实世界中抽象出图形的过程,通过丰富的生活实例,进一步认识立体图形的形状及结构特征3、情感、态度与价值观:在独立思考的基础上,积极参与对数学问题的讨论,并敢于表现自己,丰富学习数学的成功体验,激发对空间与图形的好奇心。【学习重点】本节的重点是认识常见的几何体,并用语言描述它们的某些特征,在中学阶段,常见的几何体是重要的研究对象,是中考内容之一,同学们应结合具体的实例来认识并了解他们的特征.【学习难点】本节难点是对几何体的分类,因为初中同学对分类标准不熟悉,所以同学们可从某些几何体的特征入手,找出共同特征作为一类。在学习中注意两点:①多与现实生活联系;⑵多动手制作实践或画图。学习过程一、温故知新1.你学过长方体,正方体吗?试画出其立体图形,并描述一下它的形状组成。长方体立方体2.长方体、立方体都是几何体,你平常在生活中还见过那些几何体?试一试:描述它们的形状特征二、新课探究1.看书思考;P2(回答问题)(1)书房中哪些物体的形状与长方体、正方形类似? (1)书房中哪些物体的形状与圆柱、圆锥类似?描述一下圆柱与圆锥的相同点与不同点。(2)请找出图中与笔筒形状类似物体。像这样与笔筒类似的几何体叫____________.2、看课本:认清常见的几何体。(圆柱、圆锥、正方体、长方体、棱柱、球)三、自主思考,p2想一想。(1)六棱柱的顶点、侧棱、侧面和底面如下图所示,指出图中其他棱柱的顶点、侧棱、侧面和底面。三棱柱四棱柱五棱柱(2)棱柱的侧棱、底面、侧面分别有什么特点?(3)长方体、正方体是棱柱吗?总结得出:在棱柱中,相邻两个面的交线叫做(),相邻两个侧面的交线叫做(),棱柱的所有侧棱长都(),棱柱的上、下底面的形状(),侧面的形状都是()。认识棱柱:棱柱可以分为()和(),直棱柱的侧面是()。(注:本书只讨论直棱柱)合作交流:(议一议)用自己的语言描述棱柱与圆柱的相同点与不同点。并与同学交流。看课本p3图1-—31.物体可以近似地看成是由哪些几何体组成的? 2.联系实际,找出生活中由多个几何体组成的物体。例:四.例题解析1.下列图形中那些是柱体?2.将下列几何体分类,并说明理由。引导:⑴按柱、锥、球分;⑵按组成几何体的面的平曲分;⑶按有没有顶点分五.课堂达标1、下面几种图形①三角形、②长方形③正方体、④圆⑤圆锥⑥圆柱。其中属于立体图形的是()。A.③、⑤、⑥B.①、⑵、③.C.③、⑥。D.④、⑤。2、有生活中的物体抽象出几何图形,在后面的横线上填上相应的几何体。⑴足球⑵圆珠笔⑶电视机⑷花盆⑸漏斗⑹砖块⑺纸箱⑻铁棒拓展提升:请找出三棱柱的面数、顶点数、棱的条数;四棱柱的呢?五棱柱的呢?探索棱柱顶点数、面数、棱数之间的关系。六、谈收获:本节课你得到了那些知识?学习了那些方法?七、布置作业(1)P4知识技能第2题 (2)观察身边的物体,找出其中的几何体。1.1.2生活中的立体图形课时:第2课时【学习目标】1、知识与技能:进一步认识并描述几何体的特征。2、过程与方法:通过实例进一步认识点,线,面.感受点,线,面之间的关系。3、情感、态度和价值观:丰富学习体验,开阔思维空间,激发对空间图形的探知欲望。【学习重点】进一步认识并描述几何体的特征。【学习难点】进一步认识点,线,面.感受点,线,面之间的关系学习过程一、温故知新1.举例说明几何体按形状分哪几类?2.圆柱和圆锥的相同点是,不同点是。思考:图形是由_______、_______、________构成的,面与面相交得到____,线与线相交得到_____.二、自主学习1.看课本p52.试一试,解决以下问题①找出图1——4中的点、线、面。 ②图1——4中的哪些线是直的,哪些线是曲的?那些面是平的?哪些面是曲的?三、合作交流。讨论解决:①p6议一议(1)六棱柱是有几个面围成的?圆柱是有几个面围成的?他们都是平的吗?(2)圆柱的侧面和底面相交成几条线?他们是直的还是曲的?(3)六棱柱有几个顶点?经过每一个顶点有几条棱?看课本p6想一想(1)我们可以得到:点动成(),线动成(),()动成体。(2)你能举例说明这一结论吗?能力提升:我们都知道,面动成体。(1)圆柱可以看做由哪个平面图形旋转得到?球体呢?(2)课本图1——5中各个花瓶的表面可以看做由哪个平面图形绕虚线旋转一周而得到?用线连一连。四、归纳总结圆柱柱体棱柱分类棱锥锥体圆锥生活中的立体图形--------球体体构成面面线线点五、例题解析在桌面上,棱长为a的若干个正方体摆放成如图所示的模型 ①模型中共有个正方体.②对模型的所有暴露面喷漆(不含底面),则喷漆面的总面积是六、课堂达标:1.下雨看起来是一根线,这说明电扇转起来象一个整体的圆盘,这说明2、三棱锥是由个面围成的?有个顶点,有条棱。3.五棱柱、圆锥分别是由几个面围成的?他们是直的还是曲的?七、谈收获:本节课你学习了那些知识?感受了那些问题类型和解决问题的方法?八、小试牛刀:一、选择题1、下面的几何体是棱柱的是()CB2、圆柱是由下列()图形绕虚线旋转一周而成。DA二、填空题:1.在日常生活中,我们见到类似棱柱、圆柱、圆锥、正方体、长方体以及球体的物体有哪些?请举例说出来:                        。2.圆柱体有        个面围成,长方体有         个面成。3.由点动成        ,由线动成         ,由      动成体。 4.观察下图,正方体有       个顶点,       条棱,       个面,这些面的形状都是        。5、三棱锥是由   面围成的,有   顶点,有   棱。三、解答题:1、至少找出下列几何体的4个共同点。八、布置作业(1)p7随堂练习(2)观察身边的几何体,想象一下它们是由什么平面图形旋转而成的?1.2.1展开与折叠课时:第3课时【学习目标】1、经历图形的展开与折叠的活动,发展空间观念,积累数学活动经验。2、熟练掌握正方体的几种侧面展开图,正确找出对面。3、通过观察发现、大胆猜想、动手操作、自主探究、合作交流,在学习中体验到:数学活动充满着探究和创造,以提高学习兴趣。【学习重点】体会数学伴随着人类的进步与发展,人类离不开数学。【学习难点】结合具体例子,体会数学与我们的成长密切相关。【学习过程】一、温故知新:(1)在棱柱中,任何相邻两个面的交线都叫做▁▁▁▁▁。棱柱的所有▁▁▁▁▁都相等。棱柱的▁▁▁▁▁相同。▁▁▁▁▁的形状都是长方形。(2)一底面是正方形的棱柱高为4cm,正方形的边长都为2cm,则此棱柱共有▁▁▁▁▁条棱,所有棱长之和为▁▁▁▁▁cm。二、自主学习p8“做一做”,动手试一试,并把结论写下来把一个正方体沿某些棱剪开,展成一个平面图形。 你能得到哪些形状的平面图形?并把它们画出来。三、合作交流(1)想一想:下面图形经过折叠能否围成一个正方体?(2)议一议:下图可以折成一个正方形的盒子,折好后,与1相邻的数是什么?相对的数是什么?先想一想,再折一折,看看怎么样。四、达标训练:如下图所示,图形能围成一个正方体的是()(1)(2)(3)五、谈收获1、我的收获:▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁。2、我的不足:▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁。六、能力提升1、如图,三棱柱底面边长为3cm,侧棱长5cm,则此三棱柱共▁▁个面,侧面展开图的面积为▁▁▁cm²。2、要把一个正方体剪成平面图形,需要剪▁▁▁条棱。3、下面展开图能组成正方体的是▁▁▁。ABCD4.在图中增加1个小正方形使所得图形经过折叠能够围成一个正方体,先想一想,再试一试。七、布置作业:P9问题解决3、4题 1.2.2展开与折叠课时:第4课时【学习目标】1、通过展开与折叠活动,了解棱柱、圆柱、圆锥的侧面展开图;能认识棱柱的某些特性.2、经历展开与折叠、模型制作等活动,发展空间观念,积累数学活动经验;在动手实践制作的过程中学会与人合作,学会交流自己的思维与方法。3、了解立体图形可由平面图形围成,立体图形可展开为平面图形;了解圆柱、圆锥的侧面展开图。4、通过展开与折叠的实践操作,在经历和体验图形的转换过程中,初步建立空间概念,发展几何直觉。【学习重点】通过展开与折叠活动,了解棱柱、圆柱、圆锥的侧面展开图;【学习难点】经历展开与折叠、模型制作等活动,发展空间观念学习过程:一、创设情境导入新课1.五棱柱有几个面围成的?他们都是平的吗?2.五棱柱有几个顶点?通过每一个顶点有几条棱?3.在棱柱中,任何相邻两个面的交线都叫做(),相邻两个侧面的交线叫做()。棱柱的所有侧棱长都( ),棱柱的上下底面的形状(),侧面形状都是()。二、自主探索:把三棱柱、四棱柱、五棱柱沿某些棱剪开,展成平面图形,你能得到哪些形状的平面图形?三、合作交流想一想:下列哪些图形经过折叠可以围成一个棱柱?先想一想,再折一折。(1)(2)(3)(4)做一做:p10按照如图所示的方法把圆柱、圆锥的侧面展开,会得到什么图形?先想一想,再试一试。四、谈收获:五、课堂达标1、如图,(1)长方体有___个顶点,___条棱,___个面,这些面的形状都是___。(2)那些面的形状与大小一定完全相同?(3)那些棱的长度一定相等?2、图中的两个图形经过折叠能否未成棱柱?先想一想,再折一折。 六、布置作业:学生分组准备正方体、长方体、圆柱、圆锥、球、三棱柱、四棱柱、六棱柱。(用萝卜)1.3截一个几何体课时:第5课时【学习目标】:1、认知目标:通过用一个平面去截一个正方体的切截活动过程,掌握空间图形与截面的关系,发展学生的空间观念,发展几何直觉。2、能力目标:通过学生参与对实物有限次的切截活动和用操作探索型课件进行的无限次的切截活动的过程,使学生经历观察、猜想、实际操作验证、推理等数学活动过程,发展学生的动手操作、自主探究、合作交流和分析归纳能力。3、情感目标:通过以教师为主导,引导学生观察发现、大胆猜想、动手操作、自主探索、合作交流,使学生在合作学习中体验到数学活动充满着探索和创造,使学生获得成功的体验,增强自信心,提高学习数学的兴趣。【学习重点】通过讲数学家及身边人刻苦学习数学的故事,激发学生的学习兴趣。【学习难点】培养学生初步应用数学的意识。【学习过程】一、课前准备 1、学生自制正方体(萝卜制)5个,圆柱体(萝卜制)4个,小刀一把。2、回顾:面的分类?面面相交的结果是什么?3、创设情境引入新课(1)、(拿出西瓜)这是我们常吃的一种水果-----西瓜。(2)、它象我们已学过的那种几何体?_____。(3)、按我们这里的习俗是不吃西瓜皮的,吃西瓜瓤,你一般是如何吃到里面的瓤呢?第一步怎么办?(4)、我们可以看到经过的切面是一个什么形状的图形?______。归纳:刚才实验的过程就好象用一个平面去截一个几何体,截出的面叫做_____。二、自主学习探究(一):如果用一个平面去截一个正方体,它的截面形状又是怎样的?学生利用教具以小组形式动手操作。归纳:一个平面去截一个正方体,截面可以是____、____、____、____。思考:①截面的形状可能是三角形吗?②可能是三条边都相等的三角形吗?③截面会不会是七边形?为什么?归纳:截面的形状与什么有关系____、____。探究(二):利用手中的教具与同伴共同探究用一个平面去截长方体、球体、圆柱体、圆锥体看截面的形状并完成下表:几何体名称截面形状长方体球体圆柱体 圆锥体三、课堂小结:1、掌握用平面去截上述几何体的截面形状。2、体会几何体截面的多样性。3、一个几何体的截面和什么有关____、____。四、例题解析:用一个平面截一个几何体,截面是圆,则这个几何体是?五、课堂达标;1、课本14页。随堂练习1。2、课本15页。习题1.53、用一个平面去截下面的几何体,能截出三角形截面的几何体有_____,能截出四边形截面的几何体有_____,能截出五边形截面的几何体有_____,能截出圆截面的几何体有___六、谈收获:通过这节课你有什么收获?七、:布置作业:1、选择题(1)、长方体的截面中,边数最多的多边形是()A四边形B五边形C六边形D七边形(2)下列说法不正确的是()A用一个平面截正方体,截面可以是长方形。B用一个平面截正方体,截面可以是圆形C用一个平面截圆柱体,截面可以是梯形D用一个平面截正方体,截面可以是梯形(3)用一个平面截六棱住,截面的形状不可能是()A等腰三角形B梯形C五边形D七边形 (4)一个三棱柱,用一个平面去截这个三棱柱,截面形状不可能为图中的()ABCD2、解答题(5)一个长方体形状的面包,一刀把它分成两块,截面会是什么形状?请说出四种以上的情况?(6)如图的圆柱体,它的底面半径为2cm,高为6cm.①想一想,该圆柱体的截面有几种不同形状的平面图形?②议一议,你能截出最大的长方形吗?③算一算,截得的长方形面积的最大值是多少?3.准备一个几何体1.4方向看课时:第6课时【学习目标】1、认知目标:经历从不同方向看物体的活动,让学生明确物体的三视图及画法,发展学生的空间观念。2、能力目标:让学生学会用自己的语言,合理清晰地向别人表达出自己的思维过程,能画简单物体的三视图。3、情感目标:通过引导学生进行观察和描述,让学生知道知识来源于实践,培养学生重视实践,善于观察的习惯。 【学习重点】明确物体的三视图及画法。【学习难点】能画简单物体的三视图。有三视图搭出符合条件的几何体。学习过程一、温故知新:1、创设情境,导入新课(1)、喜欢看刑侦片的同学可能知道,罪犯投入监狱时要从正面,左侧和右侧分别照照片,你知道为什么吗?(2)、看课本p16图1——17你能分辨出每台摄像机拍到的分别是下面的哪张照片?A:_______B:________C:_________D:_________二、自主学习大家观察教材16页上边的几何体。(学生交流、讨论)尝试一下把你从不同方向看到的形状画成平面从左面看从正面看从上面看三、合作交流做一做:每六人一组,拿出6个相同的小正方块搭成不同的几何体。画出从正面、左面、上面看到的几何体的形状图。课堂训练:1、长方体从左面看到的形状图是__________2、画出下图从不同方向看到的形状图从正面看________从左面看________从上面看________ 议一议一个几何体由几个大小相同的小立方体搭成,从上面和左面看到的这个几何体的形状图如下图所示,请搭出满足条件的几何体。你搭的几何体由几个小立方块构成?从上面看从左面看四、谈收获:五、达标训练:1、观察下面两幅图,其中1、2、3分别是从什么方向看的,请写在对应图的下边.图1(1)(2)(3)图2 (1)(2)(3)2、如图是由一些相同的小正方体构成的主体,图形的三种视图构成这个立体图形的小正方体的个数是(  )A.3;B.4;C.5;D.63、画出下面三棱柱,从不同方向看到的图形。六、布置作业:(1)知识技能p171(2)总结本章知识网络