- 204.00 KB
- 2021-10-22 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.2幂的乘方与积的乘方
第2课时 积的乘方
一、学习目标:1.能说出幂的乘方与积的乘方的运算法则.
2.能正确地运用幂的乘方与积的乘方法则进行幂的有关运算
二、学习重点:积的乘方的运算。
三、学习难点:正确区别幂的乘方与积的乘方的异同。
四、学习设计:
(一)预习准备
(1)预习书7~8页[来源:Zxxk.Com]
(2)回顾:
1、计算下列各式:
(1) (2) (3)
(4)(5)(6)[来源:学#科#网]
(7) (8) (9)
(10) (11)
2、下列各式正确的是( )
(A) (B) (C)(D)
(二)学习过程:
探索练习:
1、 计算:
2、 计算:
3、 计算:
从上面的计算中,你发现了什么规律?_________________________
4、猜一猜填空:(1) (2)
(3) 你能推出它的结果吗?
结论:
例题精讲xkb1.com
类型一 积的乘方的计算[来源:学科网]
例1 计算
(1)(2b2)5; (2)(-4xy2)2 (3)-(-ab)2 (4)[-2(a-b)3]5.
随堂练习
(1) (2) (3)(-xy2)2 (4)[-3(n-m)2]3.
类型二 幂的乘方、积的乘方、同底数幂相乘、整式的加减混合运算
例2 计算
(1)[-(-x)5]2·(-x2)3 (2)
(3)(x+y)3(2x+2y)2(3x+3y)2 (4)(-3a3)2·a3+(-a)2·a7-(5a3)3
随堂练习
(1)(a2n-1)2·(an+2)3 (2) (-x4)2-2(x2)3·x·x+(-3x)3·x5
w w w .x k b 1.c o m
(3)[(a+b)2]3·[(a+b)3]4
类型三 逆用积的乘方法则
例1 计算 (1)82004×0.1252004; (2)(-8)2005×0.1252004.
随堂练习[来源:学科网ZXXK]
0.2520×240 -32003·()2002+
[来源:学§科§网]
类型四 积的乘方在生活中的应用
例1 地球可以近似的看做是球体,如果用V、r分别代表球的体积和半径,那么V=πr3。地球的半径约为千米,它的体积大约是多少立方千米?
随堂练习w w w .x k b 1.c o m
(1)一个正方体棱长是3×102 mm,它的体积是多少mm?
(2)如果太阳也可以看作是球体,它的半径是地球的102倍,那么太阳的体积约是多少立方千米呢?”
当堂测评
一、判断题
1.(xy)3=xy3( ) 2.(2xy)3=6x3y3( ) 3.(-3a3)2=9a6( )
4.(x)3=x3( ) 5.(a4b)4=a16b( )
二、填空题
1.-(x2)3=_________,(-x3)2=_________. 2.(-xy2)2=_________.
3.81x2y10= ( )2. 4.(x3)2·x5=_________. 5.(a3)n=(an)x(n、x是正整数),则x=_________.
6.(-0.25)11×411=_______. (-0.125)200×8201=____________
4、拓展:
(1) 已知n为正整数,且x2n=4.求(3x3n)2-13(x2)2n的值.
(2) 已知xn=5,yn=3,求(xy)2n的值xkb1.com
(3) 若m为正整数,且x2m=3,求(3x3m)2-13(x2)2m的值.[来源:Z#xx#k.Com]
回顾小结:
1.积的乘方 (ab)n= (n为正整数)
2.语言叙述:
3.积的乘方的推广(abc)n= (n是正整数).