• 871.50 KB
  • 2021-10-25 发布

人教版七年级上册数学第三章一元一次方程用合并同类项的方法解一元一次方程教学课件

  • 20页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
一元一次方程 人教版 七年级数学上册 用合并同类项的方法解一元一次方程 导入新课 情境引入 程大位,明代商人,珠算发明家,历经二十年,于 明万历壬辰年(1592年)写就巨著《算法统宗》. 《算法统综》搜集了古代流传的595道数学难题并记 载了解决方法,堪称中国16—17世纪数学领域集大 成的著作.在该书中,有一道“百羊问题”:  甲赶羊群逐草茂,乙拽一羊随其后,     戏问甲及一百否?甲云所说无差谬,     若得这般一群凑,于添半群小半群,     得你一只来方凑,玄机奥妙谁猜透. (注:小半即四分之一) 1 1 1 100.2 4x x x x     如何解这个方程呢? 温故知新 (1) 含有相同的_____,并且相同字母的_____也相 同的项,叫做同类项; (2) 合并同类项时,把各同类项的_____相加减,字 母和字母的指数_____. 字母 指数 系数 不变 用合并同类项进行化简: (1) 3x -5x = ________; (2) -3x + 7x = ________; (3) y + 5y- 2y =________; (4) _______.  yyy 23 2 3 1 -2x 4x 4y - y x + 2x + 4x = 140 讲授新课 利用合并同类项解简单的一元一次方程一 尝试把一元一次方程转化为 x = m 的形式. 合作探究 方程的左边出现几个含x 的项,该怎么办? 它们是同类项,可以 合并成一项! 2 4 140x x x   1407 x 20x 分析:解方程,就是把方程 变形,化归为 x = m (m为常 数)的形式. 合并同类项 系数化为1 依据:乘法对加法的分配律 依据:等式性质2 思考:上述解方程中的“合并”起了什么作用? 解方程中“合并”起了化简作用,把含有未知 数的项合并为一项,从而达到把方程转化为ax = b 的形式,其中a,b是常数,“合并”的依据是逆用分 配律. 解:合并同类项,得 1 2.2 x   系数化为1,得 4.x  典例精析 例1 解下列方程: 52 6 82x x  (1) ; (2) .7 2.5 +3 1.5 15 4 6 3x x x x       解:合并同类项,得 6 78.x   系数化为1,得 = 13.x - 解下列方程: 变式训练 1 1(1) 15;2 4x x x   22 1(2) 4 2 3 .3 2x x x       解:(1)合并同类项,得 1 15.2 x  系数化为1,得 30.x  (2)合并同类项,得 1 1.6 x  去绝对值,得 6.x   1 1.6 x   系数化为1,得 解下列方程: (1) 5x-2x = 9; (2) . 解:(1)合并同类项,得 3x=9, 系数化为1,得 x=3. (2)合并同类项,得 2x=7, 72 3 2 1  xx 练一练 系数化为1,得 7 .2x  根据“总量=各部分量的和”列方程解决问题二 例2 足球表面是由若干个黑色五边形和白色六边形 皮块围成的,黑、白皮块数目的比为3:5,一个足球 表面一共有32个皮块,黑色皮块和白色皮块各有多 少个? 本题中已知黑、白皮块数目比为3:5,可设黑色 皮块有3x个,则白色皮块有5x个,然后利用相等关系 “黑色皮块数+白色皮块数=32”列方程. 提示 解:设黑色皮块有3x个,则白色皮块有5x个. 根据题意列方程 3x + 5x = 32, 解得 x = 4, 则黑色皮块有 3x = 12 (个), 白色皮块有 5x = 20 (个). 答:黑色皮块有12个,白色皮块有20个. 方法归纳:当题目中出现比例时,一般可通过间接 设元,设其中的每一份为x,然后用含x的代数式表 示各数量,根据等量关系,列方程求解. 例3 有一列数,按一定规律排列成1,-3,9,-27, 81,-243 ,··· . 其中某三个相邻数的和是-1701, 这三个数各是多少? 从符号和绝对值两方面观察,可发现这列数 的排列规律:后面的数是它前面的数与-3的乘积. 如果三个相邻数中的第1个数记为x,则后两个数分 别是-3x,9x. 提示 由三个数的和是-1701,得 3 9 1701.x x x    合并同类项,得 7 1701.x   系数化为1,得 243.x   解:设所求的三个数分别是 ., 3 , 9x x x 答:这三个数是 -243,729,-2187. 所以 3 729.x  9 2187.x   实际问题 一元一次方程设未知数    分析实际问题中的数量关系,利用其中的 相等关系列出方程,是解决实际问题的一种数 学方法. 归纳:用方程解决实际问题的过程 列方程 解方程 作答 当堂练习 1. 下列方程合并同类项正确的是 ( ) A. 由 3x-x=-1+3,得 2x =4 B. 由 2x+x=-7-4,得 3x =-3 C. 由 15-2=-2x+ x,得 3=x D. 由 6x-2-4x+2=0,得 2x=0 D 3.某中学七年级(5)班共有学生56人,该班男生的 人数是女生人数的2倍少1人.设该班有女生有x人, 可列方程为_____________. 2x-1+x=56 2.如果2x与x-3的值互为相反数,那么x等于( ) A.-1 B.1 C.-3 D.3 B 4. 解下列方程: (1) -3x + 0.5x =10; (2) 6m-1.5m-2.5m =3; (3) 3y-4y =-25-20. 解:(1) x =-4;(2) m = ;(3) y =45.3 2 5. 某洗衣厂2016年计划生产洗衣机25500台,其中Ⅰ型、 Ⅱ型、Ⅲ型三种洗衣机的数量之比为1:2:14,这三种 洗衣机计划各生产多少台? 答:计划生产Ⅰ型洗衣机1500台,Ⅱ型洗衣机 3000台,Ⅲ型洗衣机21000台. 解:设计划生产Ⅰ型洗衣机x台,则计划生产Ⅱ 型洗衣机2x台,Ⅲ型洗衣机14x台,依题意,得 x+2x+14x=25500, 解得x=1500, 则2x=3000,14x=21000.