- 212.50 KB
- 2022-03-31 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第十四章整式的乘法与因式分解14.1整式的乘法专题一幂的性质1.下列运算中,正确的是( )A.3a2-a2=2B.(a2)3=a9C.a3•a6=a9D.(2a2)2=2a42.下列计算正确的是( )A.·B.·C.D.3.下列计算正确的是( )A.2a2+a2=3a4B.a6÷a2=a3C.a6·a2=a12D.(-a6)2=a12专题二幂的性质的逆用4.若2a=3,2b=4,则23a+2b等于( )A.7B.12C.432D.1085.若2m=5,2n=3,求23m+2n的值.6.计算:(1)(-0.125)2014×(-2)2014×(-4)2015;(2)(-)2015×811007.专题三整式的乘法7.下列运算中正确的是( )A.B.C.D.8.若(3x2-2x+1)(x+b)中不含x2项,求b的值,并求(3x2-2x+1)(x+b)的值.
9.先阅读,再填空解题:(x+5)(x+6)=x2+11x+30; (x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30; (x+5)(x-6)=x2-x-30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________.(2)根据以上的规律,用公式表示出来:________.(3)根据规律,直接写出下列各式的结果:(a+99)(a-100)=________;(y-80)(y-81)=________.专题四整式的除法10.计算:(3x3y-18x2y2+x2y)÷(-6x2y)=________.11.计算:.12.计算:(a-b)3÷(b-a)2+(-a-b)5÷(a+b)4.状元笔记【知识要点】1.幂的性质(1)同底数幂的乘法:(m,n都是正整数),即同底数幂相乘,底数不变,指数相加.(2)幂的乘方:(m,n都是正整数),即幂的乘方,底数不变,指数相乘.(3)积的乘方:(n都是正整数),即积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.2.整式的乘法(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加.(3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
3.整式的除法(1)同底数幂相除:(m,n都是正整数,并且m>n),即同底数幂相除,底数不变,指数相减.(2)(a≠0),即任何不等于0的数的0次幂都等于1.(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【温馨提示】1.同底数幂乘法法则与合并同类项法则相混淆.同底数幂相乘,应是“底数不变,指数相加”;而合并同类项法则是“系数相加,字母及字母的指数不变”.2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加”;幂的乘方,应是“底数不变,指数相乘”.3.运用同底数幂的乘法(除法)法则时,必须化成同底数的幂后才能运用上述法则进行计算.4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减”符号也可以看成系数的符号来参与运算.【方法技巧】1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式.2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否则容易造成漏项或增项的错误.3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项.[来源:www.shulihua.netwww.shulihua.net]
参考答案:1.C解析:A中,3a2与-a2是同类项,可以合并,3a2―a2=2a2,故A错误;B中,(a2)3=a2×3=a6,故B错误;C中,a3•a6=a3+6=a9,故C正确;D中,(2a2)2=22(a2)2=4a4,故D错误.故选C.2.C解析:·,选项A错误;·,选项B错误;,选项C正确;,选项D错误.故选C.3.D解析:A中,,故A错误;B中,,故B错误;C中,,故C错误.故选D.4.C解析:23a+2b=23a×22b=(2a)3×(2b)2=33×42=432.故选C.5.解:23m+2n=23m·22n=(2m)3·(2n)2=53·32=1125.6.解:(1)原式=(0.125×2×4)2014×(-4)=12014×(-4)=-4.(2)原式=(-)2015×92014=(×9)2014×(-)=-.7.B解析:A中,由合并同类项的法则可得3a+2a=5a,故A错误;B中,由多项式与多项式相乘的法则可得=,故B正确;C中,由单项式与单项式相乘的法则可得=,故C错误;D中,由多项式与多项式相乘的法则可得,故D错误.综上所述,选B.8.解:原式=3x3+(3b-2)x2+(-2b+1)x+b,∵不含x2项,∴3b-2=0,得b=.∴(3x2-2x+1)(x+)=3x3-2x2+x+2x2-x+=3x3-x+.9.解:(1)观察积中的一次项系数、常数项与两因式中的常数项的关系是:一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;(2)根据以上的规律,用公式表示出来:(a+b)(a+c)=a2+(b+c)a+bc;(3)根据(2)中得出的公式得:(a+99)(a-100)=a2-a-9900;(y-80)(y-81)=y2-161y+6480.10.-x+3y-解析:(3x3y-18x2y2+x2y)÷(-6x2y)=(3x3y)÷(-6x2y)-18x2y2
÷(-6x2y)+x2y÷(-6x2y)=-x+3y-.11.解:原式12.解:(a-b)3÷(b-a)2+(-a-b)5÷(a+b)4,=(a-b)3÷(a-b)2-(a+b)5÷(a+b)4,=(a-b)-(a+b),=a-b-a-b,=-2b.
相关文档
- 新人教地理8年级上:同步试题(疆域)2022-03-315页
- 人教版初中数学7年级下册第10章 数2022-03-3125页
- 人教版初中数学7年级下册第7章 平2022-03-3117页
- 人教版初中数学7年级下册第8章 二2022-03-3124页
- 物理:9-3饱和汽与饱和气压同步试题2022-03-303页
- 六年级上册英语单元测试Unit 3 My 2022-02-1510页
- 六年级上册英语单元测试试题Unit 22022-02-1120页
- 人教新课标版五年级下册数学《分数2021-12-106页
- 人教版数学四下第四单元《小数的性2021-12-102页
- 人教新课标版五年级下册数学《数学2021-12-065页