- 894.50 KB
- 2022-04-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
12.2三角形全等的判定(2)
创设情景因铺设电线的需要,要在池塘两侧A、B处各埋设一根电线杆(如图),因无法直接量出A、B两点的距离,现有一足够的米尺。怎样测出A、B两杆之间的距离呢?。AB
知识回顾三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”)。ABCDEF用数学语言表述:在△ABC和△DEF中∴△ABC≌△DEF(SSS)AB=DEBC=EFCA=FD
探究1对于三个角对应相等的两个三角形全等吗?ABCDE如图,△ABC和△ADE中,如果DE∥AB,则∠A=∠A,∠B=∠ADE,∠C=∠AED,但△ABC和△ADE不重合,所以不全等。三个角对应相等的两个三角形不一定全等
做一做:画△ABC,使AB=3cm,AC=4cm。画法:2.在射线AM上截取AB=3cm3.在射线AN上截取AC=4cm这样画出来的三角形与同桌所画的三角形进行比较,它们互相重合吗?若再加一个条件,使∠A=45°,画出△ABC1.画∠MAN=45°4.连接BC∴△ABC就是所求的三角形把你们所画的三角形剪下来与同桌所画的三角形进行比较,它们能互相重合吗?探究2
问:如图△ABC和△DEF中,AB=DE=3㎝,∠B=∠E=300,BC=EF=5㎝则它们完全重合?即△ABC≌△DEF?3㎝5㎝300ABC3㎝5㎝300DEF
问:如图△ABC和△DEF中,AB=DE=3㎝,∠B=∠E=300,BC=EF=5㎝则它们完全重合?即△ABC≌△DEF?3㎝5㎝300ABC3㎝5㎝300DEF
三角形全等判定方法用符号语言表达为:在△ABC与△DEF中AB=DE∠B=∠EBC=EF∴△ABC≌△DEF(SAS)ABCDEF两边和它们的夹角对应相等的两个三角形全等。简写成“边角边”或“SAS”
分别找出各题中的全等三角形ABC40°40°DEF(1)DCAB(2)△ABC≌△EFD根据“SAS”△ADC≌△CBA根据“SAS”练一练
已知:如图,AB=CB,∠ABD=∠CBD△ABD和△CBD全等吗?分析:△ABD≌△CBD边:角:边:AB=CB(已知)∠ABD=∠CBD(已知)?ABCD(SAS)现在例1的已知条件不改变,而问题改变成:问AD=CD,BD平分∠ADC吗?怎么证明例一
已知:如图,AB=CB,∠ABD=∠CBD。问AD=CD,BD平分∠ADC吗?ABCD例题变式1
ABCD已知:AD=CD,BD平分∠ADC。问∠A=∠C吗?例题变式2
ABCDO补充题:1.如图AC与BD相交于点O,已知OA=OC,OB=OD,说明△AOB≌△COD的理由。2.如图,AC=BD,∠CAB=∠DBA,你能判断BC=AD吗?说明理由。ABCD归纳:判定两条线段相等或二个角相等可以通过从它们所在的两个三角形全等而得到。
问题解决因铺设电线的需要,要在池塘两侧A、B处各埋设一根电线杆(如图),因无法直接量出A、B两点的距离,现有一足够的米尺。请你设计一种方案,粗略测出A、B两杆之间的距离。。AB
小明的设计方案:先在池塘旁取一个能直接到达A和B处的点C,连结AC并延长至D点,使AC=DC,连结BC并延长至E点,使BC=EC,连结CD,用米尺测出DE的长,这个长度就等于A,B两点的距离。请你说明理由。AC=DC∠ACB=∠DCEBC=EC△ACB≌△DCEAB=DE想一想
小明做了一个如图所示的风筝,其中∠EDH=∠FDH,ED=FD,将上述条件标注在图中,小明不用测量就能知道EH=FH吗?与同桌进行交流。EFDH△EDH≌△FDH根据“SAS”,所以EH=FH想一想
以2.5cm,3.5cm为三角形的两边,长度为2.5cm的边所对的角为40°,情况又怎样?动手画一画,你发现了什么?ABCDEF2.5cm3.5cm40°40°3.5cm2.5cm结论:两边及其一边所对的角相等,两个三角形不一定全等探究3
猜一猜:是不是二条边和一个角对应相等,这样的两个三角形一定全等吗?你能举例说明吗?如图△ABC与△ABD中,AB=AB,AC=BD,∠B=∠B他们全等吗?BACD注:这个角一定要是这两边所夹的角
课堂小结:2.用尺规作图:已知两边及其夹角的三角形画三角形1.三角形全等的条件,两边和它们的夹角对应相等的两个三角形全等(边角边或SAS)3、会判定三角形全等
1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2.已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.作业布置
相关文档
- 八年级上数学课件- 12-1 全等三角2022-04-0118页
- 八年级上数学课件八年级上册数学课2022-04-0112页
- 八年级上数学课件第12章一次函数122022-04-0113页
- 八年级上数学课件八年级上册数学课2022-04-0111页
- 八年级上数学课件《勾股定理的简单2022-04-0112页
- 八年级上数学课件13-2 全等图形_2022-04-0126页
- 八年级上数学课件第12章一次函数122022-04-0117页
- 八年级上数学课件- 15-2-3 整数指2022-04-0125页
- 八年级上数学课件八年级上册数学课2022-04-0115页
- 八年级上数学课件八年级上册数学课2022-04-0110页