- 530.84 KB
- 2021-11-06 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2019年浙江省丽水市中考数学试卷
一、选择题(本题有10小题,每小题3分,共30分).
1.(3分)实数4的相反数是( )
A.-14 B.﹣4 C.14 D.4
2.(3分)计算a6÷a3,正确的结果是( )
A.2 B.3a C.a2 D.a3
3.(3分)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是( )
A.1 B.2 C.3 D.8
4.(3分)某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是( )
星期
一
二
三
四
最高气温
10°C
12°C
11°C
9°C
最低气温
3°C
0°C
﹣2°C
﹣3°C
A.星期一 B.星期二 C.星期三 D.星期四
5.(3分)一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球的概率为( )
A.12 B.310 C.15 D.710
6.(3分)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是( )
A.在南偏东75°方向处 B.在5km处
C.在南偏东15°方向5km处 D.在南偏东75°方向5km处
7.(3分)用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是( )
A.(x﹣3)2=17 B.(x﹣3)2=14 C.(x﹣6)2=44 D.(x﹣3)2=1
8.(3分)如图,矩形ABCD的对角线交于点O.已知AB=m,∠BAC=∠α,则下列结论错误的是( )
A.∠BDC=∠α B.BC=m•tanα C.AO=m2sinα D.BD=mcosα
9.(3分)如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )
A.2 B.3 C.32 D.2
10.(3分)将一张正方形纸片按如图步骤,通过折叠得到图④
,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则FMGF的值是( )
A.5-22 B.2-1 C.12 D.22
二、填空题(本题有6小题,每小题4分,共24分)
11.(4分)不等式3x﹣6≤9的解是 .
12.(4分)数据3,4,10,7,6的中位数是 .
13.(4分)当x=1,y=-13时,代数式x2+2xy+y2的值是 .
14.(4分)如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是 .
15.(4分)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是 .
16.(4分)图2,图3是某公共汽车双开门的俯视示意图,ME、EF、FN是门轴的滑动轨道,∠E=∠F=90°,两门AB、CD的门轴A、B、C、D都在滑动轨道上,两门关闭时(图2),A、D分别在E、F处,门缝忽略不计(即B、C重合);两门同时开启,A、D分别沿E→M,F→N的方向匀速滑动,带动B、C滑动:B到达E时,C恰好到达F,此时两门完全开启,已知AB=50cm,CD=40cm.
(1)如图3,当∠ABE=30°时,BC= cm.
(2)在(1)的基础上,当A向M方向继续滑动15cm时,四边形ABCD的面积为 cm2.
三、解答题(本题有8小题,共66分,各小题都必须写出解答过程。)
17.(6分)计算:|﹣3|﹣2tan60°+12+(13)﹣1.
18.(6分)解方程组3x-4(x-2y)=5,x-2y=1.
19.(6分)某校根据课程设置要求,开设了数学类拓展性课程,为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整).请根据图中信息回答问题:
(1)求m,n的值.
(2)补全条形统计图.
(3)该校共有1200名学生,试估计全校最喜欢“数学史话”的学生人数.
20.(8分)如图,在7×6的方格中,△ABC的顶点均在格点上.试按要求画出线段EF(E,F均为格点),各画出一条即可.
21.(8分)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.
(1)求BD的度数.
(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.
22.(10分)如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数y=kx(k>0,x>0)的图象上,边CD在x轴上,点B在y轴上,已知CD=2.
(1)点A是否在该反比例函数的图象上?请说明理由;
(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;
(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.
23.(10分)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=﹣(x﹣m)2+m+2的顶点.
(1)当m=0时,求该抛物线下方(包括边界)的好点个数.
(2)当m=3时,求该抛物线上的好点坐标.
(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.
24.(12分)如图,在等腰Rt△ABC中,∠ACB=90°,AB=142,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.
(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.
(2)已知点G为AF的中点.
①如图2,若AD=BD,CE=2,求DG的长.
②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.
2019年浙江省丽水市中考数学试卷
参考答案与试题解析
一、选择题(本题有10小题,每小题3分,共30分).
1.(3分)实数4的相反数是( )
A.-14 B.﹣4 C.14 D.4
【解答】解:∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是﹣4;
故选:B.
2.(3分)计算a6÷a3,正确的结果是( )
A.2 B.3a C.a2 D.a3
【解答】解:由同底数幂除法法则:底数不变,指数相减知,a6÷a3=a6﹣3=a3.
故选:D.
3.(3分)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是( )
A.1 B.2 C.3 D.8
【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,
即2<a<8,
即符合的只有3,
故选:C.
4.(3分)某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是( )
星期
一
二
三
四
最高气温
10°C
12°C
11°C
9°C
最低气温
3°C
0°C
﹣2°C
﹣3°C
A.星期一 B.星期二 C.星期三 D.星期四
【解答】解:星期一温差10﹣3=7℃;
星期二温差12﹣0=12℃;
星期三温差11﹣(﹣2)=13℃;
星期四温差9﹣(﹣3)=12℃;
故选:C.
5.(3分)一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球的概率为( )
A.12 B.310 C.15 D.710
【解答】解:袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率是510=12.
故选:A.
6.(3分)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是( )
A.在南偏东75°方向处 B.在5km处
C.在南偏东15°方向5km处 D.在南偏东75°方向5km处
【解答】解:由图可得,目标A在南偏东75°方向5km处,
故选:D.
7.(3分)用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是( )
A.(x﹣3)2=17 B.(x﹣3)2=14 C.(x﹣6)2=44 D.(x﹣3)2=1
【解答】解:用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,
故选:A.
8.(3分)如图,矩形ABCD的对角线交于点O.已知AB=m,∠BAC=∠α,则下列结论错误的是( )
A.∠BDC=∠α B.BC=m•tanα C.AO=m2sinα D.BD=mcosα
【解答】解:A、∵四边形ABCD是矩形,
∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,
∴AO=OB=CO=DO,
∴∠DBC=∠ACB,
∴由三角形内角和定理得:∠BAC=∠BDC=∠α,故本选项不符合题意;
B、在Rt△ABC中,tanα=BCm,
即BBC=m•tanα,故本选项不符合题意;
C、在Rt△ABC中,AC=mcosα,即AO=m2cosα,故本选项符合题意;
D、∵四边形ABCD是矩形,
∴DC=AB=m,
∵∠BAC=∠BDC=α,
∴在Rt△DCB中,BD=mcosα,故本选项不符合题意;
故选:C.
9.(3分)如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )
A.2 B.3 C.32 D.2
【解答】解:∵∠A=90°,AB=AD,
∴△ABD为等腰直角三角形,
∴∠ABD=45°,BD=2AB,
∵∠ABC=105°,
∴∠CBD=60°,
而CB=CD,
∴△CBD为等边三角形,
∴BC=BD=2AB,
∵上面圆锥与下面圆锥的底面相同,
∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,
∴下面圆锥的侧面积=2×1=2.
故选:D.
10.(3分)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则FMGF的值是( )
A.5-22 B.2-1 C.12 D.22
【解答】解:连接HF,设直线MH与AD边的交点为P,如图:
由折叠可知点P、H、F、M四点共线,且PH=MF,
设正方形ABCD的边长为2a,
则正方形ABCD的面积为4a2,
∵若正方形EFGH与五边形MCNGF的面积相等
∴由折叠可知正方形EFGH的面积=15×正方形ABCD的面积=45a2,
∴正方形EFGH的边长GF=45a2=255a
∴HF=2GF=2105a
∴MF=PH=2a-2105a2=5-105a
∴FMGF=5-105a÷255a=5-22
故选:A.
二、填空题(本题有6小题,每小题4分,共24分)
11.(4分)不等式3x﹣6≤9的解是 x≤5 .
【解答】解:3x﹣6≤9,
3x≤9+6
3x≤15
x≤5,
故答案为:x≤5
12.(4分)数据3,4,10,7,6的中位数是 6 .
【解答】解:将数据重新排列为3、4、6、7、10,
∴这组数据的中位数为6,
故答案为:6.
13.(4分)当x=1,y=-13时,代数式x2+2xy+y2的值是 49 .
【解答】解:当x=1,y=-13时,
x2+2xy+y2
=(x+y)2
=(1-13)2
=(23)2
=49
故答案为:49.
14.(4分)如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是 40° .
【解答】解:过A点作AC⊥OC于C,
∵∠AOC=50°,
∴∠OAC=40°.
故此时观察楼顶的仰角度数是40°.
故答案为:40°.
15.(4分)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是 (32,4800) .
【解答】解:令150t=240(t﹣12),
解得,t=32,
则150t=150×32=4800,
∴点P的坐标为(32,4800),
故答案为:(32,4800).
16.(4分)图2,图3是某公共汽车双开门的俯视示意图,ME、EF、FN是门轴的滑动轨道,∠E=∠F=90°,两门AB、CD的门轴A、B、C、D都在滑动轨道上,两门关闭时(图2),A、D分别在E、F处,门缝忽略不计(即B、C重合);两门同时开启,A、D分别沿E→M,F→N的方向匀速滑动,带动B、C滑动:B到达E时,C恰好到达F,此时两门完全开启,已知AB=50cm,CD=40cm.
(1)如图3,当∠ABE=30°时,BC= 90﹣453 cm.
(2)在(1)的基础上,当A向M方向继续滑动15cm时,四边形ABCD的面积为 2256 cm2.
【解答】解:∵A、D分别在E、F处,门缝忽略不计(即B、C重合)且AB=50cm,CD=40cm.
∴EF=50+40=90cm
∵B到达E时,C恰好到达F,此时两门完全开启,
∴B、C两点的路程之比为5:4
(1)当∠ABE=30°时,在Rt△ABE中,BE=32AB=253cm,
∴B运动的路程为(50﹣253)cm
∵B、C两点的路程之比为5:4
∴此时点C运动的路程为(50﹣253)×45=(40﹣203)cm
∴BC=(50﹣253)+(40﹣203)=(90﹣453)cm
故答案为:90﹣453;
(2)当A向M方向继续滑动15cm时,设此时点A运动到了点A'处,点B、C、D分别运动到了点B'、C'、D'处,连接A'D',如图:
则此时AA'=15cm
∴A'E=15+25=40cm
由勾股定理得:EB'=30cm,
∴B运动的路程为50﹣30=20cm
∴C运动的路程为16cm
∴C'F=40﹣16=24cm
由勾股定理得:D'F=32cm,
∴四边形A'B'C'D'的面积=梯形A'EFD'的面积﹣△A'EB'的面积﹣△D'FC'的面积=12×90×(40+32)-12×30×40-12×24×32=2256cm2.
∴四边形ABCD的面积为2256cm2.
故答案为:2256.
三、解答题(本题有8小题,共66分,各小题都必须写出解答过程。)
17.(6分)计算:|﹣3|﹣2tan60°+12+(13)﹣1.
【解答】解:原式=3-23+23+3=6.
18.(6分)解方程组3x-4(x-2y)=5,x-2y=1.
【解答】解:3x-4(x-2y)=5,①x-2y=1②.,
将①化简得:﹣x+8y=5 ③,
②+③,得y=1,
将y=1代入②,得x=3,
∴x=3y=1;
19.(6分)某校根据课程设置要求,开设了数学类拓展性课程,为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整).请根据图中信息回答问题:
(1)求m,n的值.
(2)补全条形统计图.
(3)该校共有1200名学生,试估计全校最喜欢“数学史话”的学生人数.
【解答】解:(1)观察条形统计图与扇形统计图知:选A的有12人,占20%,
故总人数有12÷20%=60人,
∴m=15÷60×100%=25%
n=9÷60×100%=15%;
(2)选D的有60﹣12﹣15﹣9﹣6=18人,
故条形统计图补充为:
(3)全校最喜欢“数学史话”的学生人数为:1200×25%=300人.
20.(8分)如图,在7×6的方格中,△ABC的顶点均在格点上.试按要求画出线段EF(E,F均为格点),各画出一条即可.
【解答】解:如图:
从图中可得到AC边的中点在格点上设为E,过E作AB的平行线即可在格点上找到F,则EG平分BC;
EC=5,EF=5,FC=10,借助勾股定理确定F点,则EF⊥AC;
借助圆规作AB的垂直平分线即可;
21.(8分)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.
(1)求BD的度数.
(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.
【解答】解:(1)连接OB,
∵BC是圆的切线,∴OB⊥BC,
∵四边形OABC是平行四边形,
∴OA∥BC,∴OB⊥OA,
∴△AOB是等腰直角三角形,
∴∠ABO=45°,
∴BD的度数为45°;
(2)连接OE,过点O作OH⊥EC于点H,设EH=t,
∵OH⊥EC,
∴EF=2HE=2t,
∵四边形OABC是平行四边形,
∴AB=CO=EF=2t,
∵△AOB是等腰直角三角形,
∴OA=2t,
则HO=OE2-EH2=2t2-t2=t,
∵OC=2OH,
∴∠OCE=30°.
22.(10分)如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数y=kx(k>0,x>0)的图象上,边CD在x轴上,点B在y轴上,已知CD=2.
(1)点A是否在该反比例函数的图象上?请说明理由;
(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;
(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.
【解答】解:(1)过点P作x轴垂线PG,连接BP,
∵P是正六边形ABCDEF的对称中心,CD=2,
∴BP=2,G是CD的中点,
∴PG=3,
∴P(2,3),
∵P在反比例函数y=kx上,
∴k=23,
∴y=23x,
由正六边形的性质,A(1,23),
∴点A在反比例函数图象上;
(2)D(3,0),E(4,3),
设DE的解析式为y=mx+b,
∴3m+b=04m+b=3,
∴m=3b=-33,
∴y=3x﹣33,
联立方程y=23xy=3x-33解得x=3+172,
∴Q点横坐标为3+172;
(3)E(4,3),F(3,23),
将正六边形向左平移两个单位后,E(2,3),F(1,23),
则点E与F都在反比例函数图象上;
23.(10分)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=﹣(x﹣m)2+m+2的顶点.
(1)当m=0时,求该抛物线下方(包括边界)的好点个数.
(2)当m=3时,求该抛物线上的好点坐标.
(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.
【解答】解:(1)如图1中,当m=0时,二次函数的表达式y=﹣x2+2,函数图象如图1所示.
∵当x=0时,y=2,当x=1时,y=1,
∴抛物线经过点(0,2)和(1,1),
观察图象可知:好点有:(0,0),(0,1),(0,2),(1,0),(1,1),共5个.
(2)如图2中,当m=3时,二次函数解析式为y=﹣(x﹣3)2+5.如图2.
∵当x=1时,y=1,当x=2时,y=4,当x=4时,y=4,
∴抛物线经过(1,1),(2,4),(4,4),
共线图象可知,抛物线上存在好点,坐标分别为(1,1),(2,4),(4,4).
(3)如图3中,∵抛物线的顶点P(m,m+2),
∴抛物线的顶点P在直线y=x+2上,
∵点P在正方形内部,则0<m<2,
如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC
内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),
当抛物线经过点E时,﹣(2﹣m)2+m+2=1,
解得m=5-132或5+132(舍弃),
当抛物线经过点F时,﹣(2﹣m)2+m+2=2,
解得m=1或4(舍弃),
∴当5-132≤m<1时,顶点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点.
24.(12分)如图,在等腰Rt△ABC中,∠ACB=90°,AB=142,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.
(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.
(2)已知点G为AF的中点.
①如图2,若AD=BD,CE=2,求DG的长.
②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.
【解答】(1)证明:如图1中,
∵CA=CB,∠ACB=90°,BD=AD,
∴CD⊥AB,CD=AD=BD,
∵CD=CF,
∴AD=CF,
∵∠ADC=∠DCF=90°,
∴AD∥CF,
∴四边形ADFC是平行四边形,
∴OD=OC,
∵BD=2OD.
(2)①解:如图2中,作DT⊥BC于点T,FH⊥BC于H.
由题意:BD=AD=CD=72,BC=2BD=14,
∵DT⊥BC,
∴BT=TC=7,
∵EC=2,
∴TE=5,
∵∠DTE=∠EHF=∠DEF=90°,
∴∠DET+∠TDE=90°,∠DET+∠FEH=90°,
∴∠TDE=∠FEH,
∵ED=EF,
∴△DTE≌△EHF(AAS),
∴FH=ET=5,
∵∠DDBE=∠DFE=45°,
∴B,D,E,F四点共圆,
∴∠DBF+∠DEF=90°,
∴∠DBF=90°,
∵∠DBE=45°,
∴∠FBH=45°,
∵∠BHF=90°,
∴∠HBF=∠HFB=45°,
∴BH=FH=5,
∴BF=52,
∵∠ADC=∠ABF=90°,
∴DG∥BF,
∵AD=DB,
∴AG=GF,
∴DG=12BF=522.
②解:如图3﹣1中,当∠DEG=90°时,F,E,G,A共线,作DT⊥BC于点T,FH⊥BC于H.设EC=x.
∵AD=6BD,
∴BD=17AB=22,
∵DT⊥BC,∠DBT=45°,
∴DT=BT=2,
∵△DTE≌△EHF,
∴EH=DT=2,
∴BH=FH=12﹣x,
∵FH∥AC,
∴EHEC=FHAC,
∴2x=12-x'14,
整理得:x2﹣12x+28=0,
解得x=6±22.
如图3﹣2中,当∠EDG=90°时,取AB的中点O,连接OG.作EH⊥AB于H.
设EC=x,由2①可知BF=2(12﹣x),OG=12BF=22(12﹣x),
∵∠EHD=∠EDG=∠DOG=90°,
∴∠ODG+∠OGD=90°,∠ODG+∠EDH=90°,
∴∠DGO=∠HDE,
∴△EHD∽△DOG,
∴DHOG=EHDO,
∴22-22(14-x)22(12-x)=22(14-x)52,
整理得:x2﹣36x+268=0,
解得x=18﹣214或18+214(舍弃),
如图3﹣3中,当∠DGE=90°时,取AB的中点O,连接OG,CG,作DT⊥BC于T,FH⊥BC于H,EK⊥CG于K.设EC=x.
∵∠DBE=∠DFE=45°,
∴D,B,F,E四点共圆,
∴∠DBF+∠DEF=90°,
∵∠DEF=90°,
∴∠DBF=90°,
∵AO=OB,AG=GF,
∴OG∥BF,
∴∠AOG=∠ABF=90°,
∴OG⊥AB,
∵OG垂直平分线段AB,∵CA=CB,
∴O,G,C共线,
由△DTE≌△EHF,可得EH=DT=BT=2,ET=FH=12﹣x,BF=2(12﹣x),OG=12BF=22(12﹣x),CK=EK=22x,GK=72-22(12﹣x)-22x,
由△OGD∽△KEG,可得OGEK=ODGK,
∴22(12-x)22x=5272-22(12-x)-22x,
解得x=2,
,综上所述,满足条件的EC的值为6±22或18﹣214或2.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2019/6/30 9:36:13;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521
相关文档
- 2018年江苏省连云港中考数学试卷含2021-11-0623页
- 2018年湖北省荆门市中考数学试卷含2021-11-0616页
- 黑龙江省龙东地区中考数学试卷含答2021-11-0636页
- 2018年山东省滨州市中考数学试卷含2021-11-0619页
- 2019年天津市中考数学试卷含答案2021-11-0627页
- 2019年山东省临沂市中考数学试卷含2021-11-0629页
- 2018年山西省中考数学试卷含答案2021-11-0621页
- 2018年湖南省永州市中考数学试卷含2021-11-0627页
- 江苏省无锡市中考数学试卷含答案解2021-11-0630页
- 2018年四川省南充市中考数学试卷含2021-11-0621页