- 434.00 KB
- 2021-11-06 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018年吉林省中考数学试卷
一、选择题(共6小题,每小题2分,满分12分)
1.(2.00分)计算(﹣1)×(﹣2)的结果是( )
A.2 B.1 C.﹣2 D.﹣3
2.(2.00分)如图是由4个相同的小正方体组成的立体图形,它的主视图是( )
A. B. C. D.
3.(2.00分)下列计算结果为a6的是( )
A.a2•a3 B.a12÷a2 C.(a2)3 D.(﹣a2)3
4.(2.00分)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( )
A.10° B.20° C.50° D.70°
5.(2.00分)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为( )
A.12 B.13 C.14 D.15
6.(2.00分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为( )
A. B.
C. D.
二、填空题(共8小题,每小题3分,满分24分)
7.(3.00分)计算:= .
8.(3.00分)买单价3元的圆珠笔m支,应付 元.
9.(3.00分)若a+b=4,ab=1,则a2b+ab2= .
10.(3.00分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为 .
11.(3.00分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为 .
12.(3.00分)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB= m.
13.(3.00分)如图,A,B,C,D是⊙O上的四个点,=,若∠AOB=58°,则∠BDC= 度.
14.(3.00分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为 度.
三、解答题(共12小题,满分84分)
15.(5.00分)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:
原式=a2+2ab﹣(a2﹣b2) (第一步)
=a2+2ab﹣a2﹣b2(第二步)
=2ab﹣b2 (第三步)
(1)该同学解答过程从第 步开始出错,错误原因是 ;
(2)写出此题正确的解答过程.
16.(5.00分)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.
17.(5.00分)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.
18.(5.00分)在平面直角坐标系中,反比例函数y=(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.
19.(7.00分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.
根据以上信息,解答下列问题.
(1)冰冰同学所列方程中的x表示 ,庆庆同学所列方程中的y表示 ;
(2)两个方程中任选一个,并写出它的等量关系;
(3)解(2)中你所选择的方程,并回答老师提出的问题.
20.(7.00分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:
第一步:点D绕点A顺时针旋转180°得到点D1;
第二步:点D1绕点B顺时针旋转90°得到点D2;
第三步:点D2绕点C顺时针旋转90°回到点D.
(1)请用圆规画出点D→D1→D2→D经过的路径;
(2)所画图形是 对称图形;
(3)求所画图形的周长(结果保留π).
21.(7.00分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α的代数式表示旗杆AB的高度.
数学活动方案
活动时间:2018年4月2日 活动地点:学校操场 填表人:林平
课题
测量学校旗杆的高度
活动目的
运用所学数学知识及方法解决实际问题
方案示意图
测量步骤
(1)用 测得∠ADE=α;
(2)用 测得BC=a米,CD=b米.
计算过程
22.(7.00分)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.
收集数据:
从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:
甲:400,400,408,406,410,409,400,393,394,395
乙:403,404,396,399,402,402,405,397,402,398
整理数据:
表一
质量(g)
频数
种类
393≤x<396
396≤x<399
399≤x<402
402≤x<405
405≤x<408
408≤x<411
甲
3
0
0
1
3
乙
0
1
5
0
分析数据:
表二
种类
平均数
中位数
众数
方差
甲
401.5
400
36.85
乙
400.8
402
8.56
得出结论:
包装机分装情况比较好的是 (填甲或乙),说明你的理由.
23.(8.00分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示
(1)家与图书馆之间的路程为 m,小玲步行的速度为 m/min;
(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;
(3)求两人相遇的时间.
24.(8.00分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.
(1)求证:四边形ADEF为平行四边形;
(2)当点D为AB中点时,▱ADEF的形状为 ;
(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.
25.(10.00分)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)
(1)当PQ⊥AB时,x= ;
(2)求y关于x的函数解析式,并写出x的取值范围;
(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.
26.(10.00分)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.
(1)当a=﹣1时,抛物线顶点D的坐标为 ,OE= ;
(2)OE的长是否与a值有关,说明你的理由;
(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;
(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.
2018年吉林省中考数学试卷
参考答案与试题解析
一、选择题(共6小题,每小题2分,满分12分)
1.(2.00分)计算(﹣1)×(﹣2)的结果是( )
A.2 B.1 C.﹣2 D.﹣3
【分析】根据“两数相乘,同号得正”即可求出结论.
【解答】解:(﹣1)×(﹣2)=2.
故选:A.
2.(2.00分)如图是由4个相同的小正方体组成的立体图形,它的主视图是( )
A. B. C. D.
【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
【解答】解:从正面看易得第一层有3个正方形,第二层最右边有一个正方形.
故选:B.
3.(2.00分)下列计算结果为a6的是( )
A.a2•a3 B.a12÷a2 C.(a2)3 D.(﹣a2)3
【分析】
分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.
【解答】解:A、a2•a3=a5,此选项不符合题意;
B、a12÷a2=a10,此选项不符合题意;
C、(a2)3=a6,此选项符合题意;
D、(﹣a2)3=﹣a6,此选项不符合题意;
故选:C.
4.(2.00分)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( )
A.10° B.20° C.50° D.70°
【分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a旋转的度数.
【解答】解:如图.
∵∠AOC=∠2=50°时,OA∥b,
∴要使木条a与b平行,木条a旋转的度数至少是70°﹣50°=20°.
故选:B.
5.(2.00分)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为( )
A.12 B.13 C.14 D.15
【分析】由D为BC中点知BD=3,再由折叠性质得ND=NA,从而根据△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD可得答案.
【解答】解:∵D为BC的中点,且BC=6,
∴BD=BC=3,
由折叠性质知NA=ND,
则△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD=3+9=12,
故选:A.
6.(2.00分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为( )
A. B.
C. D.
【分析】根据题意可以列出相应的方程组,从而可以解答本题.
【解答】解:由题意可得,
,
故选:D.
二、填空题(共8小题,每小题3分,满分24分)
7.(3.00分)计算:= 4 .
【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.
【解答】解:∵42=16,
∴=4,
故答案为4.
8.(3.00分)买单价3元的圆珠笔m支,应付 3m 元.
【分析】根据总价=单价×数量列出代数式.
【解答】解:依题意得:3m.
故答案是:3m.
9.(3.00分)若a+b=4,ab=1,则a2b+ab2= 4 .
【分析】直接利用提取公因式法分解因式,再把已知代入求出答案.
【解答】解:∵a+b=4,ab=1,
∴a2b+ab2=ab(a+b)
=1×4
=4.
故答案为:4.
10.(3.00分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为 ﹣1 .
【分析】由于关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的不等式,解答即可.
【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,
∴△=b2﹣4ac=0,
即:22﹣4(﹣m)=0,
解得:m=﹣1,
故选答案为﹣1.
11.(3.00分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为
(﹣1,0) .
【分析】求出OA、OB,根据勾股定理求出AB,即可得出AC,求出OC长即可.
【解答】解:∵点A,B的坐标分别为(4,0),(0,3),
∴OA=4,OB=3,
在Rt△AOB中,由勾股定理得:AB==5,
∴AC=AB=5,
∴OC=5﹣4=1,
∴点C的坐标为(﹣1,0),
故答案为:(﹣1,0),
12.(3.00分)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB= 100 m.
【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例可得两岸间的大致距离AB.
【解答】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,
∴△ABD∽△ECD,
∴,,
解得:AB=(米).
故答案为:100.
13.(3.00分)如图,A,B,C,D是⊙O上的四个点,=,若∠AOB=58°,则∠BDC= 29 度.
【分析】根据∠BDC=∠BOC求解即可;
【解答】解:连接OC.
∵=,
∴∠AOB=∠BOC=58°,
∴∠BDC=∠BOC=29°,
故答案为29.
14.(3.00分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为 36 度.
【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.
【解答】解:
∵△ABC中,AB=AC,
∴∠B=∠C,
∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,
∴∠A:∠B=1:2,
即5∠A=180°,
∴∠A=36°,
故答案为:36.
三、解答题(共12小题,满分84分)
15.(5.00分)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:
原式=a2+2ab﹣(a2﹣b2) (第一步)
=a2+2ab﹣a2﹣b2(第二步)
=2ab﹣b2 (第三步)
(1)该同学解答过程从第 二 步开始出错,错误原因是 去括号时没有变号 ;
(2)写出此题正确的解答过程.
【分析】先计算乘法,然后计算减法.
【解答】解:(1)该同学解答过程从第 二步开始出错,错误原因是 去括号时没有变号;
故答案是:二;去括号时没有变号;
(2)原式=a2+2ab﹣(a2﹣b2)
=a2+2ab﹣a2+b2
=2ab+b2.
1
6.(5.00分)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.
【分析】根据正方形的性质,利用SAS即可证明;
【解答】证明:∵四边形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF=90°,
在△ABE和△BCF中,
,
∴△ABE≌△BCF.
17.(5.00分)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.
【分析】列表得出所有等可能的情况数,再找出两次摸出的小球所标字母相同的情况数,即可求出其概率.
【解答】解:列表得:
A
B
C
A
(A,A)
(B,A)
(C,A)
B
(A,B)
(B,B)
(C,B)
C
(A,C)
(B,C)
(C,C)
由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种,
所以该同学两次摸出的小球所标字母相同的概率==.
18.(5.00分)在平面直角坐标系中,反比例函数y=(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.
【分析】先求出P点的坐标,再把P点的坐标代入反比例函数的解析式,即可求出答案.
【解答】解:∵把x=1代入y=x+2得:y=3,
即P点的坐标是(1,3),
把P点的坐标代入y=得:k=3,
即反比例函数的解析式是y=.
19.(7.00分)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.
根据以上信息,解答下列问题.
(1)冰冰同学所列方程中的x表示 甲队每天修路的长度 ,庆庆同学所列方程中的y表示 甲队修路400米所需时间 ;
(2)两个方程中任选一个,并写出它的等量关系;
(3)解(2)中你所选择的方程,并回答老师提出的问题.
【分析】(1)根据两人的方程思路,可得出:x表示甲队每天修路的长度;y表示甲队修路400米所需时间;
(2)根据题意,可找出:(冰冰)甲队修路400米所用时间=乙队修路600米所用时间;(庆庆)乙队每天修路的长度﹣甲队每天修路的长度=20米;
(3)选择两个方程中的一个,解之即可得出结论.
【解答】解:(1)∵冰冰是根据时间相等列出的分式方程,
∴x表示甲队每天修路的长度;
∵庆庆是根据乙队每天比甲队多修20米列出的分式方程,
∴y表示甲队修路400米所需时间.
故答案为:甲队每天修路的长度;甲队修路400米所需时间.
(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;
庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20米(选择一个即可).
(3)选冰冰的方程:=,
去分母,得:400x+8000=600x,
移项,x的系数化为1,得:x=40,
检验:当x=40时,x、x+20均不为零,
∴x=40.
答:甲队每天修路的长度为40米.
选庆庆的方程:﹣=20,
去分母,得:600﹣400=20y,
将y的系数化为1,得:y=10,
经验:当y=10时,分母y不为0,
∴y=10,
∴=40.
答:甲队每天修路的长度为40米.
20.(7.00分)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:
第一步:点D绕点A顺时针旋转180°得到点D1;
第二步:点D1绕点B顺时针旋转90°得到点D2;
第三步:点D2绕点C顺时针旋转90°回到点D.
(1)请用圆规画出点D→D1→D2→D经过的路径;
(2)所画图形是 轴对称 对称图形;
(3)求所画图形的周长(结果保留π).
【分析】(1)利用旋转变换的性质画出图象即可;
(2)根据轴对称图形的定义即可判断;
(3)利用弧长公式计算即可;
【解答】解:(1)点D→D1→D2→D经过的路径如图所示:
(2)观察图象可知图象是轴对称图形,
故答案为轴对称.
(3)周长=4×=8π.
21.(7.00分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α的代数式表示旗杆AB的高度.
数学活动方案
活动时间:2018年4月2日 活动地点:学校操场 填表人:林平
课题
测量学校旗杆的高度
活动目的
运用所学数学知识及方法解决实际问题
方案示意图
测量步骤
(1)用 测角仪 测得∠ADE=α;
(2)用 皮尺 测得BC=a米,CD=b米.
计算过程
【分析】在Rt△ADE中,求出AE,再利用AB=AE+BE计算即可;
【解答】解:(1)用 测角仪测得∠ADE=α;
(2)用 皮尺测得BC=a米,CD=b米.
(3)计算过程:∵四边形BCDE是矩形,
∴DE=BC=a,BE=CD=b,
在Rt△ADE中,AE=ED•tanα=a•tanα,
∴AB=AE+EB=a•tanα+b.
22.(7.00分)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.
收集数据:
从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:
甲:400,400,408,406,410,409,400,393,394,395
乙:403,404,396,399,402,402,405,397,402,398
整理数据:
表一
质量(g)
频数
种类
393≤x<396
396≤x<399
399≤x<402
402≤x<405
405≤x<408
408≤x<411
甲
3
0
3
0
1
3
乙
0
3
1
5
1
0
分析数据:
表二
种类
平均数
中位数
众数
方差
甲
401.5
400
400
36.85
乙
400.8
402
402
8.56
得出结论:
包装机分装情况比较好的是 乙 (填甲或乙),说明你的理由.
【分析】整理数据:由题干中的数据结合表中范围确定个数即可得;
分析数据:根据众数和中位数的定义求解可得;
得出结论:根据方差的意义,方差小分装质量较为稳定即可得.
【解答】解:整理数据:
表一
质量(g)
频数
种类
393≤x<396
396≤x<399
399≤x<402
402≤x<405
405≤x<408
408≤x<411
甲
3
0
3
0
1
3
乙
0
3
1
5
1
0
分析数据:
将甲组数据重新排列为:393、394、395、400、400、400、406、408、409、410,
∴甲组数据的中位数为400;
乙组数据中402出现次数最多,有3次,
∴乙组数据的众数为402;
表二
种类
平均数
中位数
众数
方差
甲
401.5
400
400
36.85
乙
400.8
402
402
8.56
得出结论:
表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,
所以包装机分装情况比较好的是乙.
故答案为:乙.
23.(8.00分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示
(1)家与图书馆之间的路程为 4000 m,小玲步行的速度为 200 m/min;
(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;
(3)求两人相遇的时间.
【分析】(1)认真分析图象得到路程与速度数据;
(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;
(3)两人相遇实际上是函数图象求交点.
【解答】解:(1)结合题意和图象可知,线段CD为小玲路程与时间函数图象,折现O﹣A﹣B为为小东路程与时间图象
则家与图书馆之间路程为4000m,小玲步行速度为2000÷10=200m/s
故答案为:4000,200
(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,
∴他离家的路程y=4000﹣300x
自变量x的范围为0≤x≤
(3)由图象可知,两人相遇是在小玲改变速度之前
∴4000﹣300x=200x
解得x=8
∴两人相遇时间为第8分钟.
24.(8.00分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.
(1)求证:四边形ADEF为平行四边形;
(2)当点D为AB中点时,▱ADEF的形状为 菱形 ;
(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.
【分析】(1)根据平行线的性质得到∠BDE=∠A,根据题意得到∠DEF=∠BDE,根据平行线的判定定理得到AD∥EF,根据平行四边形的判定定理证明;
(2)根据三角形中位线定理得到DE=AC,得到AD=DE,根据菱形的判定定理证明;
(3)根据等腰三角形的性质得到AE⊥EG,根据有一个角是直角的平行四边形是矩形证明.
【解答】(1)证明:∵DE∥AC,
∴∠BDE=∠A,
∵∠DEF=∠A,
∴∠DEF=∠BDE,
∴AD∥EF,又∵DE∥AC,
∴四边形ADEF为平行四边形;
(2)解:▱ADEF的形状为菱形,
理由如下:∵点D为AB中点,
∴AD=AB,
∵DE∥AC,点D为AB中点,
∴DE=AC,
∵AB=AC,
∴AD=DE,
∴平行四边形ADEF为菱形,
故答案为:菱形;
(3)四边形AEGF是矩形,
理由如下:由(1)得,四边形ADEF为平行四边形,
∴AF∥DE,AF=DE,
∵EG=DE,
∴AF∥DE,AF=GE,
∴四边形AEGF是平行四边形,
∵AD=AG,EG=DE,
∴AE⊥EG,
∴四边形AEGF是矩形.
25.(10.00分)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)
(1)当PQ⊥AB时,x= s ;
(2)求y关于x的函数解析式,并写出x的取值范围;
(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.
【分析】(1)当PQ⊥AB时,BQ=2PB,由此构建方程即可解决问题;
(2)分三种情形分别求解即可解决问题;
(3)分两种情形分别求解即可解决问题;
【解答】解:(1)当PQ⊥AB时,BQ=2PB,
∴2x=2(2﹣2x),
∴x=s.
故答案为s.
(2)①如图1中,当0<x≤时,重叠部分是四边形PQMN.
y=2x×x=2x2.
②如图②中,当<x≤1时,重叠部分是四边形PQEN.
y=(2﹣x+2tx×x=x2+x
③如图3中,当1<x<2时,重叠部分是四边形PNEQ.
y=(2﹣x+2)×[x﹣2(x﹣1)]=x2﹣3x+4;
综上所述,y=.
(3)①如图4中,当直线AM经过BC中点E时,满足条件.
则有:tan∠EAB=tan∠QPB,
∴=,
解得x=.
②如图5中,当直线AM经过CD的中点E时,满足条件.
此时tan∠DEA=tan∠QPB,
∴=,
解得x=,
综上所述,当x=s或时,直线AM将矩形ABCD的面积分成1:3两部分.
26.(10.00分)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.
(1)当a=﹣1时,抛物线顶点D的坐标为 (﹣1,4) ,OE= 3 ;
(2)OE的长是否与a值有关,说明你的理由;
(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;
(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.
【分析】(1)求出直线CD的解析式即可解决问题;
(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断;
(3)求出落在特殊情形下的a的值即可判断;
(4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题;
【解答】解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3,
∴顶点D(﹣1,4),C(0,3),
∴直线CD的解析式为y=﹣x+3,
∴E(3,0),
∴OE=3,
故答案为(﹣1,4),3.
(2)结论:OE的长与a值无关.
理由:∵y=ax2+2ax﹣3a,
∴C(0,﹣3a),D(﹣1,﹣4a),
∴直线CD的解析式为y=ax﹣3a,
当y=0时,x=3,
∴E(3,0),
∴OE=3,
∴OE的长与a值无关.
(3)当β=45°时,OC=OE=3,
∴﹣3a=3,
∴a=﹣1,
当β=60°时,在Rt△OCE中,OC=OE=3,
∴﹣3a=3,
∴a=﹣,
∴45°≤β≤60°,a的取值范围为﹣≤a≤﹣1.
(4)如图,作PM⊥对称轴于M,PN⊥AB于N.
∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,
∴∠DPM=∠EPN,
∴△DPM≌△EPN,
∴PM=PN,PM=EN,
∵D(﹣1,﹣4a),E(3,0),
∴EN=4+n=3﹣m,
∴n=﹣m﹣1,
当顶点D在x轴上时,P(1,﹣2),此时m的值1,
∵抛物线的顶点在第二象限,
∴m<1.
∴n=﹣m﹣1(m<1).
相关文档
- 2020年四川省泸州市中考数学试卷【2021-11-069页
- 2019年四川省达州市中考数学试卷含2021-11-0632页
- 2013年浙江省绍兴市中考数学试卷及2021-11-0622页
- 2019年宁夏中考数学试卷2021-11-0627页
- 威海市中考数学试卷含答案解析2021-11-0620页
- 2017年湖北省天门市中考数学试卷2021-11-0633页
- 2019年贵州省毕节市中考数学试卷2021-11-0625页
- 2019浙江省衢州市中考数学试卷2021-11-0621页
- 2019年湖北省孝感市中考数学试卷2021-11-0629页
- 江苏省扬州市中考数学试卷含答案解2021-11-0634页