• 104.50 KB
  • 2021-11-06 发布

2020九年级数学上册第2章因式分解法

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2.2.3‎‎ 因式分解法 第2课时 选用合适的方法解一元二次方程 知识点 选用合适的方法解一元二次方程 ‎1.解方程x2-3x=0最恰当的方法是(  )‎ A.直接开平方法 B.配方法 C.公式法 D.因式分解法 ‎2.解下列方程:①x2=9;②x2-4x-1=0;③2x2+7x-6=0;④3(2x+1)2=5(2x+1).应选择的较简便的方法依次是(  )‎ A.直接开平方法、配方法、公式法、因式分解法 B.因式分解法、公式法、配方法、直接开平方法 C.直接开平方法、公式法、公式法、因式分解法 D.直接开平方法、公式法、因式分解法、因式分解法 ‎3.下列方程,不能用因式分解法求解的是(  )‎ A.x2=3x B.2(x-2)2=3x-6‎ C.9x2+6x+1=0 D.(x+2)(3x-1)=5‎ ‎4.给下列方程选择最恰当的解法:①x2-4=0;②2x2+3x=0;③x2-3x-2=0;④4x2-12x+9=0;⑤3x2=36;⑥(x+5)2=0;⑦x2=3x;⑧2x2+4x=1.(1)直接开平方法:________;(2)因式分解法:________;(3)公式法:________.(填序号)‎ ‎5.我们已经学习了一元二次方程的四种解法:直接开平方法、因式分解法、配方法和公式法.请选用适当的方法解下列方程.‎ ‎(1)x2-3x+1=0;     (2)(x-1)2=3;‎ ‎(3)x2-2x=4;     (4)x(2x-5)=4x-10;‎ ‎(5)(3x-2)2=(x+4)2;     (6)(x-1)(x+2)=10.‎ ‎6.给出一种运算:对于函数y=xn,规定y′=nxn-1.例如:若函数y=x4,则有y′=4x3.已知函数y=x3,则方程y′=12的解是(  )‎ 3‎ A.x1=4,x2=-4    B.x1=2,x2=-2‎ C.x1=x2=0    D.x1=2 ,x2=-2 ‎7.方程(2x+1)(x-1)=8(9-x)-1的根为________.‎ ‎8.已知某直角三角形的斜边长为‎5 cm,两条直角边长相差‎1 cm,求这个直角三角形的面积.‎ ‎ ‎ ‎9.解方程:x4-13x2+36=0.‎ 解:原方程可化为(x2-4)(x2-9)=0,‎ ‎∴(x+2)(x-2)(x+3)(x-3)=0,‎ ‎∴x+2=0或x-2=0或x+3=0或x-3=0,‎ ‎∴x1=-2,x2=2,x3=-3,x4=3.‎ 观察以上方程的解法你能求出方程x2-7|x|+10=0的解吗?请试一试.‎ ‎    ‎ 3‎ ‎1.D [解析] 方程左边有公因式x,故用因式分解法较简便.‎ ‎2.[A ‎3.D [解析] 选项A,B可以用提公因式法因式分解,选项C可以用完全平方公式因式分解,选项D不具有因式分解的结构特点,不能用因式分解法求解.‎ ‎4.(1)①⑤⑥ (2)②④⑦ (3)③⑧‎ ‎5.解:(1)a=1,b=-3,c=1,‎ b2-‎4ac=5>0,∴x=.‎ ‎∴x1=,x2=.‎ ‎(2)x-1=±,∴x1=1+,x2=1-.‎ ‎(3)配方得(x-1)2=5,x-1=±,‎ ‎∴x1=1+,x2=1-.‎ ‎(4)把原方程化为x(2x-5)=2(2x-5),‎ ‎∴x(2x-5)-2(2x-5)=0,‎ 即(2x-5)(x-2)=0,∴x1=,x2=2.‎ ‎(5)由平方根的意义,得3x-2=±(x+4),‎ ‎∴3x-2=x+4或3x-2=-(x+4),‎ ‎∴2x=6或4x=-2,∴x1=3,x2=-.‎ ‎(6)原方程可化为x2+x-12=0,‎ a=1,b=1,c=-12,b2-‎4ac=49>0,‎ ‎∴x==,‎ 即x1=-4,x2=3.‎ ‎6.B ‎7.-8或 [解析] 整理,得2x2-x-1=72-8x-1,2x2+7x-72=0,则(x+8)(2x-9)=0,解得x1=-8,x2=.‎ ‎8.解:设较短的直角边长为x cm,则另一条直角边长为(x+1)cm.‎ 根据题意,得(x+1)2+x2=25,‎ 解这个方程,得x1=3,x2=-4(三角形的边长不能为负值,舍去).‎ 所以x+1=4,‎ 即该直角三角形的两条直角边长分别为3 cm和4 cm,所以这个直角三角形的面积为3×4×=6(cm2).‎ ‎9.解: x2-7|x|+10=0,‎ ‎(|x|-2)(|x|-5)=0,‎ ‎∴|x|-2=0或|x|-5=0,‎ 解得x1=2,x2=-2,x3=5,x4=-5.‎ 3‎