• 464.00 KB
  • 2021-11-10 发布

中考数学基础题强化提高测试10

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
中考数学基础题强化提高测试 10 总分 70 分 时间 35 分钟 一、选择题(本大题 5 小题,每小题 4 分,共 20 分)在每小题列出的四个选项中,只有一个是正确的, 请把答题卡上对应题目所选的选项涂黑. 1. 4 的算术平方根是( ) A. 2 B. 2 C. 2 D. 2 2.计算 3 2( )a 结果是( ) A. 6a B. 9a C. 5a D. 8a 3.如图所示几何体的主(正)视图是( ) A. B. C. D. 4.《广东省 2009 年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资 726 亿元,用科学记数 法表示正确的是( ) A. 107.26 10 元 B. 972.6 10 元 C. 110.726 10 元 D. 117.26 10 元 5.方程组 2 2 3 0 10 x y x y      的解是( ) A. 1 1 1 3 x y    2 2 1 3 x y      B. 1 2 1 2 3 3 1 1 x x y y          C. 1 2 1 2 3 3 1 1 x x y y          D. 1 2 1 2 1 1 3 3 x x y y          二、填空题:(本大题 5 小题,每小题 4 分,共 20 分)请将下列各题的正确答案填写在答题卡相应的位置 上. 6.分解因式 2 2 3 3x y x y   . 7.已知 O⊙ 的直径 8cmAB C , 为 O⊙ 上的一点, 30BAC  °,则 BC = cm . 8.一种商品原价 120 元,按八折(即原价的 80%)出售,则现售价应为 元. 9.在一个不 透明的布袋中装有 2 个白球和 n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出 第 7 题图 A C B O 一个球,摸到黄球的概率是 4 5 ,则 n  _____________. 10.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖块, 第 n 个图形中需要黑色瓷砖________块(用含 n 的代数式表示). …… (1) (2) (3) 三、解答题(一)(本大题 5 小题,每小题 6 分,共 30 分) 11.( 6 分)计算: 1 9 sin30 π+32    0°+( ) . 12.( 6 分)解方程 2 2 1 1 1x x    13.(本题满分 6 分)如图所示, ABC△ 是等边三角形,D 点是 AC 的中点,延长 BC 到 E ,使CE CD , (1)用尺规作图的方法,过 D 点作 DM BE ,垂足是 M (不写作法,保留作图痕迹); (2)求证: BM EM . 14.(本题满分 6 分)已知:关于 x 的方程 22 1 0x kx   (1)求证:方程有两个不相等的实数根; (2)若方程的一个根是 1 ,求另一个根及 k 值. 第 10 题图 A CB D E 第 13 题图 15.(本题满分 6 分)如图所示,A 、B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即 线段 AB ),经测量,森林保护中心 P 在 A 城市的北偏东30°和 B 城市的北偏西 45°的方向上,已知 森林保护区的范围在以 P 点为圆心,50km 为半径的圆形区域内,请问计划修建的这条高速公路会不 会穿越保护区,为什么?(参考数据: 3 ≈1.732,2 ≈1.414 ) 参考答案 一、选择题(本大题 5 小题,每小题 4 分,共 20 分) 1.B 2.A 3.B 4.A 5.D 二、填空题(本大题 5 小题,每小题 4 分,共 20 分) 6. ( )( 3)x y x y   7.4 8.96 9.8 10.10,3 1n  三、解答题(一)(本大题 5 小题,每题 6 分,共 30 分) 11.解:原式= 1 13 12 2    ···················································································· 4 分 =4.·································································································6 分 12.解:方程两边同时乘以 ( 1)( 1)x x  ,································································2 分 2 ( 1)x   ,····································································································· 4 分 3x   ,············································································································5 分 经检验: 3x   是方程的解.·················································································6 分 13.解:(1)作图见答案 13 题图, 30° A B FE P 45° 第 15 题图 A CB D E M ···························································· 2 分 (2) ABC△ 是等边三角形, D 是 AC 的中点, BD 平分 ABC (三线合一), 2ABC DBE   .·························································································· 4 分 CE CD , CED CDE   . 又 ACB CED CDE     , 2ACB E   .·······························································································5 分 又 ABC ACB   , 2 2DBC E    , DBC E   , BD DE  . 又 DM BE , BM EM  .··································································································· 6 分 14.解:(1) 22 1 0x kx   , 2 24 2 ( 1) 8k k        ,··············································································· 2 分 无论 k 取何值, 2k ≥0 ,所以 2 8 0k   ,即 0  , 方程 22 1 0x kx   有两个不相等的实数根.·························································3 分 (2)设 22 1 0x kx   的另一个根为 x , 则 1 2 kx    , 1( 1) 2x   ,···············································································4 分 解得: 1 2x  , 1k  ,  22 1 0x kx   的另一个根为 1 2 , k 的值为 1.······················································ 6 分 15.解:过点 P 作 PC AB ,C 是垂足, 则 30APC  °, 45BPC  °,······································2 分 tan30AC PC  °, tan 45BC PC  °, AC BC AB  ,························································· 4 分 tan30 tan 45 100PC PC   ° ° , 3 1 1003 PC        ,···················································· 5 分 50(3 3) 50 (3 1.732) 63.4 50PC     ≈ ≈ , 答:森林保护区的中心与直线 AB 的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护 区.··················································································································· 6 分 答案 15 题图 A B FE P C