- 295.61 KB
- 2021-11-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2019年山东省潍坊市中考数学试卷
一、选择题(本大题共12小题,共36分。在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分)
1.(3分)2019的倒数的相反数是( )
A.﹣2019 B.-12019 C.12019 D.2019
2.(3分)下列运算正确的是( )
A.3a×2a=6a B.a8÷a4=a2
C.﹣3(a﹣1)=3﹣3a D.(13a3)2=19a9
3.(3分)“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为( )
A.10.02亿 B.100.2亿 C.1002亿 D.10020亿
4.(3分)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是( )
A.俯视图不变,左视图不变
B.主视图改变,左视图改变
C.俯视图不变,主视图不变
D.主视图改变,俯视图改变
5.(3分)利用教材中时计算器依次按键下:
则计算器显示的结果与下列各数中最接近的一个是( )
A.2.5 B.2.6 C.2.8 D.2.9
6.(3分)下列因式分解正确的是( )
A.3ax2﹣6ax=3(ax2﹣2ax) B.x2+y2=(﹣x+y)(﹣x﹣y)
C.a2+2ab﹣4b2=(a+2b)2 D.﹣ax2+2ax﹣a=﹣a(x﹣1)2
7.(3分)小莹同学10个周综合素质评价成绩统计如下:
成绩(分)
94
95
97
98
100
周数(个)
1
2
2
4
1
这10个周的综合素质评价成绩的中位数和方差分别是( )
A.97.5 2.8 B.97.5 3
C.97 2.8 D.97 3
8.(3分)如图,已知∠AOB.按照以下步骤作图:
①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.
②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.
③连接OE交CD于点M.
下列结论中错误的是( )
A.∠CEO=∠DEO B.CM=MD
C.∠OCD=∠ECD D.S四边形OCED=12CD•OE
9.(3分)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是( )
A. B.
C. D.
10.(3分)关于x的一元二次方程x2+2mx+m2+m=0的两个实数根的平方和为12,则m的值为( )
A.m=﹣2 B.m=3 C.m=3或m=﹣2 D.m=﹣3或m=2
11.(3分)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=35,DF=5,则BC的长为( )
A.8 B.10 C.12 D.16
12.(3分)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是( )
A.2≤t<11 B.t≥2 C.6<t<11 D.2≤t<6
二、填空题(本题共6小题,满分18分。只要求填写最后结果,每小题填对得3分。)
13.(3分)若2x=3,2y=5,则2x+y= .
14.(3分)当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是 .
15.(3分)如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=1x(x>0)与y=-5x(x<0)的图象上,则tan∠BAO的值为 .
16.(3分)如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB= .
17.(3分)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△PAB的周长最小时,S△PAB= .
18.(3分)如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与ln在第一象限内交于点Pn,则点Pn的坐标为 .(n为正整数)
三、解答题(本题共7小题,共66分。解答应写出文字说明、证明过程或推演步骤。)
19.(5分)己知关于x,y的二元一次方程组2x-3y=5x-2y=k的解满足x>y,求k的取值范围.
20.(6分)自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB=200米,坡度为1:3;将斜坡AB的高度AE降低AC=20米后,斜坡AB改造为斜坡CD,其坡度为1:4.求斜坡CD的长.(结果保留根号)
21.(9分)如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次,每一次停止后,小明将指针所指数字记录如下:
次数
第1次
第2次
第3次
第4次
第5次
第6次
第7次
第8次
第9次
第10次
数字
3
5
2
3
3
4
3
5
(1)求前8次的指针所指数字的平均数.
(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时为无效转次.)
22.(10分)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.
(1)求证:△AHF为等腰直角三角形.
(2)若AB=3,EC=5,求EM的长.
23.(10分)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.
(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?
(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计.)
24.(13分)如图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.
(1)当MN∥B′D′时,求α的大小.
(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.
25.(13分)如图,在平面直角坐标系xoy中,O为坐标原点,点A(4,0),点B(0,4),△ABO的中线AC与y轴交于点C,且⊙M经过O,A,C三点.
(1)求圆心M的坐标;
(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;
(3)在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=45时,求点P的坐标.
2019年山东省潍坊市中考数学试卷
参考答案与试题解析
一、选择题(本大题共12小题,共36分。在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分)
1.(3分)2019的倒数的相反数是( )
A.﹣2019 B.-12019 C.12019 D.2019
【解答】解:2019的倒数是12019,再求12019的相反数为-12019;
故选:B.
2.(3分)下列运算正确的是( )
A.3a×2a=6a B.a8÷a4=a2
C.﹣3(a﹣1)=3﹣3a D.(13a3)2=19a9
【解答】解:A、3a×2a=6a2,故本选项错误;
B、a8÷a4=a4,故本选项错误;
C、﹣3(a﹣1)=3﹣3a,正确;
D、(13a3)2=19a6,故本选项错误.
故选:C.
3.(3分)“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为( )
A.10.02亿 B.100.2亿 C.1002亿 D.10020亿
【解答】解:
1.002×1011=1 002 000 000 00=1002亿
故选:C.
4.(3分)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是( )
A.俯视图不变,左视图不变
B.主视图改变,左视图改变
C.俯视图不变,主视图不变
D.主视图改变,俯视图改变
【解答】解:将正方体①移走后,
新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变;
故选:A.
5.(3分)利用教材中时计算器依次按键下:
则计算器显示的结果与下列各数中最接近的一个是( )
A.2.5 B.2.6 C.2.8 D.2.9
【解答】解:∵7≈2.646,
∴与7最接近的是2.6,
故选:B.
6.(3分)下列因式分解正确的是( )
A.3ax2﹣6ax=3(ax2﹣2ax) B.x2+y2=(﹣x+y)(﹣x﹣y)
C.a2+2ab﹣4b2=(a+2b)2 D.﹣ax2+2ax﹣a=﹣a(x﹣1)2
【解答】解:A、3ax2﹣6ax=3ax(x﹣2),故此选项错误;
B、x2+y2,无法分解因式,故此选项错误;
C、a2+2ab﹣4b2,无法分解因式,故此选项错误;
D、﹣ax2+2ax﹣a=﹣a(x﹣1)2,正确.
故选:D.
7.(3分)小莹同学10个周综合素质评价成绩统计如下:
成绩(分)
94
95
97
98
100
周数(个)
1
2
2
4
1
这10个周的综合素质评价成绩的中位数和方差分别是( )
A.97.5 2.8 B.97.5 3
C.97 2.8 D.97 3
【解答】解:这10个周的综合素质评价成绩的中位数是97+982=97.5(分),
平均成绩为110×(94+95×2+97×2+98×4+100)=97(分),
∴这组数据的方差为110×[(94﹣97)2+(95﹣97)2×2+(97﹣97)2×2+(98﹣97)2×4+(100﹣97)2]=3(分2),
故选:B.
8.(3分)如图,已知∠AOB.按照以下步骤作图:
①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.
②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.
③连接OE交CD于点M.
下列结论中错误的是( )
A.∠CEO=∠DEO B.CM=MD
C.∠OCD=∠ECD D.S四边形OCED=12CD•OE
【解答】解:由作图步骤可得:OE是∠AOB的角平分线,
∴∠CEO=∠DEO,CM=MD,S四边形OCED=12CD•OE,
但不能得出∠OCD=∠ECD,
故选:C.
9.(3分)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是( )
A. B.
C. D.
【解答】解:由题意当0≤x≤3时,y=3,
当3<x<5时,y=12×3×(5﹣x)=-32x+152.
故选:D.
10.(3分)关于x的一元二次方程x2+2mx+m2+m=0的两个实数根的平方和为12,则m的值为( )
A.m=﹣2 B.m=3 C.m=3或m=﹣2 D.m=﹣3或m=2
【解答】解:设x1,x2是x2+2mx+m2+m=0的两个实数根,
∴△=﹣4m≥0,
∴m≤0,
∴x1+x2=﹣2m,x1•x2=m2+m,
∴x12+x22=(x1+x2)2﹣2x1•x2=4m2﹣2m2﹣2m=2m2﹣2m=12,
∴m=3或m=﹣2;
∴m=﹣2;
故选:A.
11.(3分)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=35,DF=5,则BC的长为( )
A.8 B.10 C.12 D.16
【解答】解:连接BD,如图,
∵AB为直径,
∴∠ADB=∠ACB=90°,
∵∠AD=CD,
∴∠DAC=∠DCA,
而∠DCA=∠ABD,
∴∠DAC=∠ABD,
∵DE⊥AB,
∴∠ABD+∠BDE=90°,
而∠ADE+∠BDE=90°,
∴∠ABD=∠ADE,
∴∠ADE=∠DAC,
∴FD=FA=5,
在Rt△AEF中,∵sin∠CAB=EFAF=35,
∴EF=3,
∴AE=52-32=4,DE=5+3=8,
∵∠ADE=∠DBE,∠AED=∠BED,
∴△ADE∽△DBE,
∴DE:BE=AE:DE,即8:BE=4:8,
∴BE=16,
∴AB=4+16=20,
在Rt△ABC中,∵sin∠CAB=BCAB=35,
∴BC=20×35=12.
故选:C.
12.(3分)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是( )
A.2≤t<11 B.t≥2 C.6<t<11 D.2≤t<6
【解答】解:∵y=x2+bx+3的对称轴为直线x=1,
∴b=﹣2,
∴y=x2﹣2x+3,
∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,
∵方程在﹣1<x<4的范围内有实数根,
当x=﹣1时,y=6;
当x=4时,y=11;
函数y=x2﹣2x+3在x=1时有最小值2;
∴2≤t<11;
故选:A.
二、填空题(本题共6小题,满分18分。只要求填写最后结果,每小题填对得3分。)
13.(3分)若2x=3,2y=5,则2x+y= 15 .
【解答】解:∵2x=3,2y=5,
∴2x+y=2x•2y=3×5=15.
故答案为:15.
14.(3分)当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是 1<k<3 .
【解答】解:y=(2﹣2k)x+k﹣3经过第二、三、四象限,
∴2﹣2k<0,k﹣3<0,
∴k>1,k<3,
∴1<k<3;
故答案为1<k<3;
15.(3分)如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=1x(x>0)与y=-5x(x<0)的图象上,则tan∠BAO的值为 5 .
【解答】解:过A作AC⊥x轴,过B作BD⊥x轴于D,
则∠BDO=∠ACO=90°,
∵顶点A,B分别在反比例函数y=1x(x>0)与y=-5x(x<0)的图象上,
∴S△BDO=52,S△AOC=12,
∵∠AOB=90°,
∴∠BOD+∠DBO=∠BOD+∠AOC=90°,
∴∠DBO=∠AOC,
∴△BDO∽△OCA,
∴S△BODS△OAC=(OBOA)2=5212=5,
∴OBOA=5,
∴tan∠BAO=OBOA=5,
故答案为:5.
16.(3分)如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB= 3 .
【解答】解:∵四边形ABCD为矩形,
∴∠ADC=∠C=∠B=90°,AB=DC,
由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,
∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,
∴∠AED=∠A'ED=∠A'EB=13×180°=60°,
∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB=30°,
∴∠ADE=∠A'DE=∠A'DC=30°,
又∵∠C=∠A'B'D=90°,DA'=DA',
∴△DB'A'≌△DCA'(AAS),
∴DC=DB',
在Rt△AED中,
∠ADE=30°,AD=2,
∴AE=23=233,
设AB=DC=x,则BE=B'E=x-233
∵AE2+AD2=DE2,
∴(233)2+22=(x+x-233)2,
解得,x1=-33(负值舍去),x2=3,
故答案为:3.
17.(3分)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△PAB的周长最小时,S△PAB= 125 .
【解答】解:y=x+1y=x2-4x+5,
解得,x=1y=2或x=4y=5,
∴点A的坐标为(1,2),点B的坐标为(4,5),
∴AB=(5-2)2+(4-1)2=32,
作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△PAB的周长最小,
点A′的坐标为(﹣1,2),点B的坐标为(4,5),
设直线A′B的函数解析式为y=kx+b,
-k+b=24k+b=5,得k=35b=135,
∴直线A′B的函数解析式为y=35x+135,
当x=0时,y=135,
即点P的坐标为(0,135),
将x=0代入直线y=x+1中,得y=1,
∵直线y=x+1与y轴的夹角是45°,
∴点P到直线AB的距离是:(135-1)×sin45°=85×22=425,
∴△PAB的面积是:32×4252=125,
故答案为:125.
18.(3分)如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与ln在第一象限内交于点Pn,则点Pn的坐标为 (n,2n+1) .(n为正整数)
【解答】解:连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示:
在Rt△OA1P1中,OA1=1,OP1=2,
∴A1P1=OP12-OA12=22-12=3,
同理:A2P2=32-22=5,A3P3=42-32=7,……,
∴P1的坐标为( 1,3),P2的坐标为( 2,5),P3的坐标为(3,7),……,
…按照此规律可得点Pn的坐标是(n,(n+1)2-n2),即(n,2n+1)
故答案为:(n,2n+1).
三、解答题(本题共7小题,共66分。解答应写出文字说明、证明过程或推演步骤。)
19.(5分)己知关于x,y的二元一次方程组2x-3y=5x-2y=k的解满足x>y,求k的取值范围.
【解答】解:2x-3y=5①x-2y=k②
①﹣②得:x﹣y=5﹣k,
∵x>y,
∴x﹣y>0.
∴5﹣k>0.
解得:k<5.
20.(6分)自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB=200米,坡度为1:3;将斜坡AB的高度AE降低AC=20米后,斜坡AB改造为斜坡CD,其坡度为1:4.求斜坡CD的长.(结果保留根号)
【解答】解:∵∠AEB=90°,AB=200,坡度为1:3,
∴tan∠ABE=13=33,
∴∠ABE=30°,
∴AE=12AB=100,
∵AC=20,
∴CE=80,
∵∠CED=90°,斜坡CD的坡度为1:4,
∴CEDE=14,
即80ED=14,
解得,ED=320,
∴CD=802+3202=8017米,
答:斜坡CD的长是8017米.
21.(9分)如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次,每一次停止后,小明将指针所指数字记录如下:
次数
第1次
第2次
第3次
第4次
第5次
第6次
第7次
第8次
第9次
第10次
数字
3
5
2
3
3
4
3
5
(1)求前8次的指针所指数字的平均数.
(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时为无效转次.)
【解答】解:(1)前8次的指针所指数字的平均数为18×(3+5+2+3+3+4+3+5)=3.5;
(2)∵这10次的指针所指数字的平均数不小于3.3,且不大于3.5,
∴后两次指正所指数字和要满足不小于5且不大于7,
画树状图如下:
由树状图知共有16种等可能结果,其中符合条件的有9种结果,
所以此结果的概率为916.
22.(10分)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.
(1)求证:△AHF为等腰直角三角形.
(2)若AB=3,EC=5,求EM的长.
【解答】证明:(1)∵四边形ABCD,四边形ECGF都是正方形
∴DA∥BC,AD=CD,FG=CG,∠B=∠CGF=90°
∵AD∥BC,AH∥DG
∴四边形AHGD是平行四边形
∴AH=DG,AD=HG=CD
∵CD=HG,∠ECG=∠CGF=90°,FG=CG
∴△DCG≌△HGF(SAS)
∴DG=HF,∠HFG=∠HGD
∴AH=HF,
∵∠HGD+∠DGF=90°
∴∠HFG+∠DGF=90°
∴DG⊥HF,且AH∥DG
∴AH⊥HF,且AH=HF
∴△AHF为等腰直角三角形.
(2)∵AB=3,EC=5,
∴AD=CD=3,DE=2,EF=5
∵AD∥EF
∴EMDM=EFAD=53,且DE=2
∴EM=54
23.(10分)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.
(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?
(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计.)
【解答】解:
(1)由题意,设这种水果今年每千克的平均批发价是x元,则去年的批发价为(x+1)元
今年的批发销售总额为10(1+20%)=12万元
∴120000x-100000x+1=1000
整理得x2﹣19x﹣120=0
解得x=24或x=﹣5(不合题意,舍去)
故这种水果今年每千克的平均批发价是24元.
(2)设每千克的平均售价为m元,依题意
由(1)知平均批发价为24元,则有
w=(m﹣24)(41-m3×180+300)=﹣60m2+4200m﹣66240
整理得w=﹣60(m﹣35)2+7260
∵a=﹣60<0
∴抛物线开口向下
∴当m=35元时,w取最大值
即每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元
24.(13分)如图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A
为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.
(1)当MN∥B′D′时,求α的大小.
(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.
【解答】解:(1)∵四边形AB′C′D′是菱形,
∴AB′=B′C′=C′D′=AD′,
∵∠B′AD′=∠B′C′D′=60°,
∴△AB′D′,△B′C′D′是等边三角形,
∵MN∥B′C′,
∴∠C′MN=∠C′B′D′=60°,∠CNM=∠C′D′B′=60°,
∴△C′MN是等边三角形,
∴C′M=C′N,
∴MB′=ND′,
∵∠AB′M=∠AD′N=120°,AB′=AD′,
∴△AB′M≌△AD′N(SAS),
∴∠B′AM=∠D′AN,
∵∠CAD=12∠BAD=30°,
∠DAD′=15°,
∴α=15°.
(2)∵∠C′B′D′=60°,
∴∠EB′G=120°,
∵∠EAG=60°,
∴∠EAG+∠EB′G=180°,
∴四边形EAGB′四点共圆,
∴∠AEB′=∠AGD′,
∵∠EAB′=∠GAD′,AB′=AD′,
∴△AEB′≌△AGD′(AAS),
∴EB′=GD′,AE=AG,
∵AH=AH,∠HAE=∠HAG,
∴△AHE≌△AHG(SAS),
∴EH=GH,
∵△EHB′的周长为2,
∴EH+EB′+HB′=B′H+HG+GD′=B′D′=2,
∴AB′=AB=2,
∴菱形ABCD的周长为8.
25.(13分)如图,在平面直角坐标系xoy中,O为坐标原点,点A(4,0),点B(0,4),△ABO的中线AC与y轴交于点C,且⊙M经过O,A,C三点.
(1)求圆心M的坐标;
(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;
(3)在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=45时,求点P的坐标.
【解答】解:(1)点B(0,4),则点C(0,2),
∵点A(4,0),则点M(2,1);
(2)∵⊙P与直线AD,则∠CAD=90°,
设:∠CAO=α,则∠CAO=∠ODA=∠PEH=α,
tan∠CAO=OCOA=12=tanα,则sinα=15,cosα=25,
AC=10,则CD=ACsin∠CDA=10sinα=10,
则点D(0,﹣8),
将点A、D的坐标代入一次函数表达式:y=mx+n并解得:
直线AD的表达式为:y=2x﹣8;
(3)抛物线的表达式为:y=a(x﹣2)2+1,
将点B坐标代入上式并解得:a=34,
故抛物线的表达式为:y=34x2﹣3x+4,
过点P作PH⊥EF,则EH=12EF=25,
cos∠PEH=EHPE=25PE=cosα=25,
解得:PE=5,
设点P(x,34x2﹣3x+4),则点E(x,2x﹣8),
则PE=34x2﹣3x+4﹣2x+8=5,
解得x=143或2,
则点P(143,193)或(2,1).
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2019/6/30 9:56:34;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521
相关文档
- 2018年湖南省娄底市中考数学试卷含2021-11-1020页
- 2018年黑龙江哈尔滨中考数学试卷含2021-11-109页
- 2018年甘肃省张掖市中考数学试卷含2021-11-1026页
- 2019年台湾省中考数学试卷含答案2021-11-1018页
- 嘉兴市中考数学试卷含答案解析2021-11-1024页
- 2019年四川省绵阳市中考数学试卷含2021-11-1034页
- 2019年湖南省衡阳市中考数学试卷含2021-11-1027页
- 2019年山东省威海市中考数学试卷含2021-11-1032页
- 2019年甘肃省天水市中考数学试卷含2021-11-1031页
- 2018年山东省烟台市中考数学试卷含2021-11-1012页