- 68.50 KB
- 2021-11-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
中考数学微专题《一元二次方程》靶向提升练习
一. 知识储备:
1. 一元二次方程的概念:
通过化简后,只含有 个未知数(一元),并且未知数的最高次数是
(二次)的 式方程,叫做一元二次方程.
2. 一元二次方程的一般式 :
3.一元二次方程的解:
使一元二次方程左右两边 的值叫做一元二次方程的解,也叫做一元
二次方程的根.
4.一元二次方程的解法
(1)基本思想
一元二次方程 降次 一元一次方程
(2)基本解法
直接开平方法、配方法、公式法、因式分解法.
5.一元二次方程根的判别式及根与系数的关系
(1)一元二次方程根的判别式
一 元 二 次 方 程 )0(02 acbxax 中 , acb 42 叫 做 一 元 二 次 方 程
)0(02 acbxax 的根的判别式,通常用“ ”来表示,即 acb 42
当△>0 时,一元二次方程有 实数根;
当△=0 时,一元二次方程有 实数根;
当△<0 时,一元二次方程 实数根.
(2)一元二次方程的根与系数的关系
如果一元二次方程 )0(02 acbxax 的两个实数根是 21 xx , ,
那么
a
bxx 21 ,
a
cxx 21 .
注意它的使用条件为 .
6.列一元二次方程解应用题
(1)解决应用题的一般步骤:
审 (审题目,分清已知量、未知量、等量关系等);
设 (设未知数,有时会用未知数表示相关的量);
列 (根据题目中的等量关系,列出方程);
解 (解方程,注意分式方程需检验,将所求量表示清晰);
验 (检验方程的解能否保证实际问题有意义);
答 (写出答案,切忌答非所问).
(2)常见应用题型
数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.
二.真题反馈:
1.关于 x 的一元二次方程(a﹣1)x2+x+a2﹣1=0 的一个根是 0,则 a 的值为
( )
A.1 B.﹣1 C.1 或﹣1 D. 0.5
【答案】B
2. 若关于 x 的一元二次方程 x2﹣4x+5﹣a=0 有实数根,则 a的取值范围是( )
A.a≥1 B. a>1 C. a≤1 D.a<1
【答案】A
3. 一元二次方程 x2﹣6x﹣5=0 配方组可变形为( )
A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4
【答案】A
4. 某机械厂一月份生产零件 50 万个,三月份生产零件 72 万个,则该机械厂二、
三月份生产零件数量的月平均增长率为( )
A.2% B. 5% C.10% D.20%
【答案】D
5. 若关于 x 的一元二次方程 2 2 1 0kx x 有实数根,则 k 的取值范围是( ).
A.k<0 B.k≤0 C.k≠1 且 k≠0 D.k≤1 且 k≠0
【答案】D
6. 从一块正方形的铁片上剪掉 2 cm 宽的长方形铁片,剩下的面积是 48 cm2,
则原来铁片的面积是( )
A.64 cm2 B.100 cm2 C.121 cm2 D.144 cm2
【答案】A
7. 关于 x 的方程 2 2( 2 8) ( 2) 1 0a a x a x ,
当a 时为一元一次方程;当a 时为一元二次方程.
【答案】a =4;a ≠4 且a ≠-2.
8. 将代数式 x2+4x-1 化成(x+p)2+q 的形式( )
A.(x-2)2+3 B.(x+2)2-4 C.(x+2)2-5 D.(x+2)2+4
【答案】C
9. 已知两个连续奇数的积是 15,则这两个数是___________________.
【答案】3 和 5 或-3 和-5
10.某校 2019 年捐款 1 万元给希望工程,以后每年都捐款,计划到 2021 年共
捐款 4.75 万元,则该校捐款的平均年增长率是 .
【答案】50%
11. 设 a、b 是方程 x2+x-2019=0 的两个实数根,则 a2+2a+b 的值为 .
【答案】2018
12. 设 x1,x2 是一元二次方程 x2-3x-2=0 的两个实数根,则 2 2
1 1 2 23x x x x 的值
为________.
【答案】7
13. 选用合适的方法解下列方程
(1) )4(5)4( 2 xx (2) 3102 2 xx
(3) x(3x-1)=3-x (4) (2x-1) 2 +3(2x-1)+2=0
14.已知 x1、x2 是关于 x 的方程 2 2 2 0x x t 的两个不相等的实数根,
(1)求 t 的取值范围; (2)设 2 2
1 2s x x ,求 s 关于 t 的函数关系式.
解: (1)因为一元二次方程有两个不相等的实数根.所以△=(-2)2-4(t+2)>0,
即 t<-1.
(2)由一元二次方程根与系数的关系知: 1 2 2x x , 1 2 2x x t ,
从而 2 2
1 2s x x 2
1 2 1 2( ) 2x x x x 22 2( 2) 2t t ,即 2 ( 1)s t t .
15. 已知二次函数 y=x2﹣2mx+m2+3(m 是常数).
(1)求证:不论 m 为何值,该函数的图象与 x 轴没有公共点;
(2)把该函数的图象沿 y 轴向下平移多少个单位长度后,得到的函数的图象与
x 轴只有一个公共点?
证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,
∴方程 x2﹣2mx+m2+3=0 没有实数解,
即不论 m 为何值,该函数的图象与 x 轴没有公共点;
(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3,
把函数 y=(x﹣m)2+3 的图象沿 y 轴向下平移 3 个单位长度后,得到函数 y=(x
﹣m)2 的图象,它的顶点坐标是(m,0),
因此,这个函数的图象与 x 轴只有一个公共点,
所以,把函数 y=x2﹣2mx+m2+3 的图象沿 y 轴向下平移 3 个单位长度后,得到的
函数的图象与 x 轴只有一个公共点.
16.某旅行社有 100 张床位,每床每晚收费 10 元,空床可全部租出;若每床每
晚提高 2 元,则减少 10 张床位租出;若每床每晚收费再提高 2 元,则再减少 10
张床位租出.以每次提高 2 元的这种方法变化下去,为了每晚获得 1120 元的利
润,每床每晚应提高多少元?
解:设每床每晚提高 x 个 2 元,则每床每晚收费为(10+2x)元,每晚出租出去的
床位为(100-10x)张,
根据题意,得(10+2x)(100-10x)=1120.
整理,得 x2-5x+6=0.
解得,x1=2,x2=3.
∴ 当 x=2 时,2x=4;
当 x=3 时,2x=6.
答:每床每晚提高 4 元或 6 元均可.
17. 已知关于 x 的一元二次方程 x2﹣(2m+3)x+m2+2=0.
(1)若方程有实数根,求实数 m 的取值范围;
(2)若方程两实数根分别为 x1、x2,且满足 x1
2+x2
2=31+|x1x2|,求实数 m 的值.
解:(1)∵关于 x 的一元二次方程 x2﹣(2m+3)x+m2+2=0 有实数根,
∴△≥0,即(2m+3)2﹣4(m2+2)≥0,
∴m≥﹣ ;
(2)根据题意得 x1+x2=2m+3,x1x2=m2+2,
∵x1
2+x2
2=31+|x1x2|,
∴(x1+x2)2﹣2x1x2=31+|x1x2|,
即(2m+3)2﹣2(m2+2)=31+m2+2,
解得 m=2,m=﹣14(舍去),
∴m=2.
相关文档
- 2013年安徽省中考数学试卷(含答案)2021-11-1018页
- 2019年陕西省中考数学试卷2021-11-1027页
- 2019年贵州省毕节市中考数学试卷2021-11-1025页
- 中考数学专题复习练习:基本作图22021-11-106页
- 2012年广西自治区钦州市中考数学试2021-11-1019页
- 2021年春中考数学一轮复习小专题突2021-11-1040页
- 2013年贵州省黔西南州中考数学试题2021-11-108页
- 2020年中考数学一轮复习基础点专题2021-11-1025页
- 2020年广东省韶关市中考数学模拟试2021-11-1021页
- 2013年广东省珠海市中考数学试题(含2021-11-1023页