- 475.50 KB
- 2021-11-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
22.2 降次--解一元二次方程(第二课时)
22.2.1 配方法(2)
◆随堂检测
1、将二次三项式 x2-4x+1 配方后得( )
A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-3
2、已知 x2-8x+15=0,左边化成含有 x 的完全平方形式,其中正确的是( )
A、x2-8x+42=31 B、x2-8x+42=1
C、x2+8x+42=1 D、x2-4x+4=-11
3、代数式
2
2
2
1
x x
x
的值为 0,求 x 的值.
4、解下列方程:(1)x2+6x+5=0;(2)2x2+6x-2=0;(3)(1+x)2+2(1+x)-4=0.
点拨:上面的方程都能化成 x2=p 或(mx+n)2=p(p≥0)的形式,那么可得
x=± p 或 mx+n=± p (p≥0).
◆典例分析
用配方法解方程 22 2 30 0x x ,下面的过程对吗?如果不对,找出错在哪里,并改正.
解:方程两边都除以 2 并移项,得 2 2 152x x ,
配方,得 2 22 1 1( ) 152 2 4x x ,
即 21 61( )2 4x ,
解得 1 61
2 2x ,
即 1 2
1 61 1 61,2 2x x .
分析:配方法中的关键一步是等式两边同时加上一次项系数一半的平方。本题中一次项系数是 2
2
,因
此,等式两边应同时加上 22( )4
或 22( )4
才对
解:上面的过程不对,错在配方一步,改正如下:
配方,得 2 22 2 1( ) 152 4 8x x ,
即 22 121( )4 8x ,
解得 2 11 2
4 4x ,
即 1 2
5 23 2, 2x x .
◆课下作业
●拓展提高
1、配方法解方程 2x2- 4
3
x-2=0 应把它先变形为( )
A、(x- 1
3
)2= 8
9
B、(x- 2
3
)2=0 C、(x- 1
3
)2= 8
9
D、(x- 1
3
)2=10
9
2、用配方法解方程 x2- 2
3
x+1=0 正确的解法是( )
A、(x- 1
3
)2= 8
9
,x= 1
3
± 2 2
3
B、(x- 1
3
)2=- 8
9
,原方程无解
C、(x- 2
3
)2= 5
9
,x1= 2
3
+ 5
3
,x2= 2 5
3
D、(x- 2
3
)2=1,x1= 5
3
,x2=- 1
3
3、无论 x、y 取任何实数,多项式 2 2 2 4 16x y x y 的值总是_______数.
4、如果 16(x-y)2+40(x-y)+25=0,那么 x 与 y 的关系是________.
5、用配方法解下列方程:(1)x2+4x+1=0;(2)2x2-4x-1=0;
(3)9y2-18y-4=0;(4)x2+3=2 3 x.
6、如果 a、b 为实数,满足 3 4a +b2-12b+36=0,求 ab 的值.
●体验中考
1、(2009 年山西太原)用配方法解方程 2 2 5 0x x 时,原方程应变形为()
A. 21 6x B. 21 6x
C. 22 9x D. 22 9x
2、(2009 年湖北仙桃)解方程: 2 4 2 0x x .
3、(2008 年,陕西)方程 2( 2) 9x 的解是( )
A. 1 25, 1x x B. 1 25, 1x x
C. 1 211, 7x x D. 1 211, 7x x
4、(2008 年,青岛)用配方法解一元二次方程: 2 2 2 0x x .
参考答案:
◆随堂检测
1、B.
2、B.
3、解:依题意,得
2
2
2 0
1 0
x x
x
,解得 2x .
4、解:(1)移项,得 x2+6x=-5,
配方,得 x2+6x+32=-5+32,即(x+3)2=4,
由此可得:x+3=±2,∴x1=-1,x2=-5
(2)移项,得 2x2+6x=-2,
二次项系数化为 1,得 x2+3x=-1,
配方 x2+3x+( 3
2
)2=-1+( 3
2
)2,
即(x+ 3
2
)2= 5
4
,由此可得 x+ 3
2
=± 5
2
,
∴x1= 5
2
- 3
2
,x2=- 5
2
- 3
2
(3)去括号整理,得 x2+4x-1=0,
移项,得 x2+4x=1,
配方,得(x+2)2=5,
由此可得 x+2=± 5 ,∴x1= 5 -2,x2=- 5 -2
◆课下作业
●拓展提高
1、D.
2、B.
3、正 22 2 22 4 16 1 ( 2) 11 11 0x y x y x y .
4、x-y= 5
4
原方程可化为 24( ) 5 0x y ,∴x-y= 5
4
.
5、解:(1)x1= 3 -2,x2=- 3 -2;(2)x1=1+ 6
2
,x2=1- 6
2
;
(3)y1= 13
3
+1,y2=1- 13
3
;(4)x1=x2= 3 .
6、解:原等式可化为 23 4 ( 6) 0a b ,∴ 3 4 0
6 0
a
b
,
∴ 4
3a , 6b ,∴ 8ab .
●体验中考
1、 B.分析:本题考查配方, 2 2 5 0x x , 2 2 1 5 1x x , 21 6x ,故选 B.
2、解: 2 4 2x x
∴ 1 22 2, 2 2.x x
3、A ∵ 2( 2) 9x ,∴ 2 3x ,∴ 1 25, 1x x .故选 A.
4、解得 1 21 3, 1 3x x .