- 395.11 KB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2019年江西省中考数学试卷
一、选择题(本大题共6小题,每小题3分,共18分每小题只有一个正确选项)
1.(3分)2的相反数是( )
A.2 B.﹣2 C.12 D.-12
2.(3分)计算1a÷(-1a2)的结果为( )
A.a B.﹣a C.-1a3 D.1a3
3.(3分)如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )
A. B. C. D.
4.(3分)根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是( )
A.扇形统计图能反映各部分在总体中所占的百分比
B.每天阅读30分钟以上的居民家庭孩子超过50%
C.每天阅读1小时以上的居民家庭孩子占20%
D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°
5.(3分)已知正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),下列说法正确的是( )
A.反比例函数y2的解析式是y2=-8x
B.两个函数图象的另一交点坐标为(2,﹣4)
C.当x<﹣2或0<x<2时,y1<y2
D.正比例函数y1与反比例函数y2都随x的增大而增大
6.(3分)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有( )
A.3种 B.4种 C.5种 D.6种
二、填空题(本大题共6小题,每小题3分,共18分)
7.(3分)因式分解:x2﹣1= .
8.(3分)我国古代数学名著《孙子算经》有估算方法:“方五,邪(通“斜”)七.见方求邪,七之,五而一.”译文为:如果正方形的边长为五,则它的对角线长为七.已知正方形的边长,求对角线长,则先将边长乘以七再除以五.若正方形的边长为1,由勾股定理得对角线长为2,依据《孙子算经》的方法,则它的对角线的长是 .
9.(3分)设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2= .
10.(3分)如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,则∠CDE= °.
11.(3分)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A﹣B﹣C横穿双向行驶车道,其中AB=BC=6米,在绿灯亮时,小明共用11秒通过AC,其中通过BC的速度是通过AB速度的1.2倍,求小明通过AB时的速度.设小明通过AB时的速度是x米/秒,根据题意列方程得: .
12.(3分)在平面直角坐标系中,A,B,C三点的坐标分别为(4,0),(4,4),(0,4),点P在x轴上,点D在直线AB上,若DA=1,CP⊥DP于点P,则点P的坐标为 .
三、(本大题共5小题,每小题6分,共30分)
13.(6分)(1)计算:﹣(﹣1)+|﹣2|+(2019-2)0;
(2)如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.
14.(6分)解不等式组:2(x+1)>x1-2x≥x+72并在数轴上表示它的解集.
15.(6分)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).
(1)在图1中作弦EF,使EF∥BC;
(2)在图2中以BC为边作一个45°的圆周角.
16.(6分)为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.
(1)八(1)班抽中歌曲《我和我的祖国》的概率是 ;
(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
17.(6分)如图,在平面直角坐标系中,点A,B的坐标分别为(-32,0),(32,1),连接AB,以AB为边向上作等边三角形ABC.
(1)求点C的坐标;
(2)求线段BC所在直线的解析式.
四、(本大题共3小题,每小题8分,共24分)
18.(8分)某校为了解七、八年级学生英语听力训练情况(七、八年级学生人数相同),某周从这两个年级学生中分别随机抽查了30名同学,调查了他们周一至周五的听力训练情况,根据调查情况得到如下统计图表:
周一至周五英语听力训练人数统计表
年级
参加英语听力训练人数
周一
周二
周三
周四
周五
七年级
15
20
a
30
30
八年级
20
24
26
30
30
合计
35
44
51
60
60
(1)填空:a= ;
(2)根据上述统计图表完成下表中的相关统计量:
年级
平均训练时间的中位数
参加英语听力训练人数的方差
七年级
24
34
八年级
14.4
(3)请你利用上述统计图表对七、八年级英语听力训练情况写出两条合理的评价;
(4)请你结合周一至周五英语听力训练人数统计表,估计该校七、八年级共480名学生中周一至周五平均每天有多少人进行英语听力训练.
19.(8分)如图1,AB为半圆的直径,点O为圆心,AF为半圆的切线,过半圆上的点C作CD∥AB交AF于点D,连接BC.
(1)连接DO,若BC∥OD,求证:CD是半圆的切线;
(2)如图2,当线段CD与半圆交于点E时,连接AE,AC,判断∠AED和∠ACD的数量关系,并证明你的结论.
20.(8分)图1是一台实物投影仪,图2是它的示意图,折线B﹣A﹣O表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=6.8cm,CD=8cm,AB=30cm,BC=35cm.(结果精确到0.1).
(1)如图2,∠ABC=70°,BC∥OE.
①填空:∠BAO= °.
②求投影探头的端点D到桌面OE的距离.
(2)如图3,将(1)中的BC向下旋转,当投影探头的端点D到桌面OE的距离为6cm时,求∠ABC的大小.
(参考数据:sin70°≈0.94,cos20°≈0.94,sin36.8°≈0.60,cos53.2°≈0.60)
五、(本大题共2小题,每小题9分,共18分)
21.(9分)数学活动课上,张老师引导同学进行如下探究:
如图1,将长为12cm的铅笔AB斜靠在垂直于水平桌面AE的直尺FO的边沿上,一端A固定在桌面上,图2是示意图.
活动一
如图3,将铅笔AB绕端点A顺时针旋转,AB与OF交于点D,当旋转至水平位置时,铅笔AB的中点C与点O重合.
数学思考
(1)设CD=xcm,点B到OF的距离GB=ycm.
①用含x的代数式表示:AD的长是 cm,BD的长是 cm;
②y与x的函数关系式是 ,自变量x的取值范围是 .
活动二
(2)①列表:根据(1)中所求函数关系式计算并补全表格
x(cm)
6
5
4
3.5
3
2.5
2
1
0.5
0
y(cm)
0
0.55
1.2
1.58
2.47
3
4.29
5.08
②描点:根据表中数值,继续描出①中剩余的两个点(x,y).
③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.
数学思考
(3)请你结合函数的图象,写出该函数的两条性质或结论.
22.(9分)在图1,2,3中,已知▱ABCD,∠ABC=120°,点E为线段BC上的动点,连接AE,以AE为边向上作菱形AEFG,且∠EAG=120°.
(1)如图1,当点E与点B重合时,∠CEF= °;
(2)如图2,连接AF.
①填空:∠FAD ∠EAB(填“>”,“<“,“=”);
②求证:点F在∠ABC的平分线上;
(3)如图3,连接EG,DG,并延长DG交BA的延长线于点H,当四边形AEGH是平行四边形时,求BCAB的值.
六、(本大题共12分)
23.(12分)特例感知
(1)如图1,对于抛物线y1=﹣x2﹣x+1,y2=﹣x2﹣2x+1,y3=﹣x2﹣3x+1,下列结论正确的序号是 ;
①抛物线y1,y2,y3都经过点C(0,1);
②抛物线y2,y3的对称轴由抛物线y1的对称轴依次向左平移12个单位得到;
③抛物线y1,y2,y3与直线y=1的交点中,相邻两点之间的距离相等.
形成概念
(2)把满足yn=﹣x2﹣nx+1(n为正整数)的抛物线称为“系列平移抛物线”.
知识应用
在(2)中,如图2.
①“系列平移抛物线”的顶点依次为P1,P2,P3,…,Pn,用含n的代数式表示顶点Pn的坐标,并写出该顶点纵坐标y与横坐标x之间的关系式;
②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:C1,C2,C3,…,∁n,其横坐标分别为﹣k﹣1,﹣k﹣2,﹣k﹣3,…,﹣k﹣n(k为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.
③在②中,直线y=1分别交“系列平移抛物线”于点A1,A2,A3,…,An,连接∁nAn,Cn﹣1An﹣1,判断∁nAn,Cn﹣1An﹣1是否平行?并说明理由.
2019年江西省中考数学试卷
参考答案与试题解析
一、选择题(本大题共6小题,每小题3分,共18分每小题只有一个正确选项)
1.(3分)2的相反数是( )
A.2 B.﹣2 C.12 D.-12
【解答】解:2的相反数为:﹣2.
故选:B.
2.(3分)计算1a÷(-1a2)的结果为( )
A.a B.﹣a C.-1a3 D.1a3
【解答】解:原式=1a•(﹣a2)=﹣a,
故选:B.
3.(3分)如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )
A. B. C. D.
【解答】解:它的俯视图为
故选:A.
4.(3分)根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是( )
A.扇形统计图能反映各部分在总体中所占的百分比
B.每天阅读30分钟以上的居民家庭孩子超过50%
C.每天阅读1小时以上的居民家庭孩子占20%
D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°
【解答】解:A.扇形统计图能反映各部分在总体中所占的百分比,此选项正确;
B.每天阅读30分钟以上的居民家庭孩子的百分比为1﹣40%=60%,超过50%,此选项正确;
C.每天阅读1小时以上的居民家庭孩子占30%,此选项错误;
D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是360°×(1﹣40%﹣10%﹣20%)=108°,此选项正确;
故选:C.
5.(3分)已知正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),下列说法正确的是( )
A.反比例函数y2的解析式是y2=-8x
B.两个函数图象的另一交点坐标为(2,﹣4)
C.当x<﹣2或0<x<2时,y1<y2
D.正比例函数y1与反比例函数y2都随x的增大而增大
【解答】解:∵正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),
∴正比例函数y1=2x,反比例函数y2=8x
∴两个函数图象的另一个角点为(﹣2,﹣4)
∴A,B选项错误
∵正比例函数y1=2x中,y随x的增大而增大,反比例函数y2=8x中,在每个象限内y随x的增大而减小,
∴D选项错误
∵当x<﹣2或0<x<2时,y1<y2
∴选项C正确
故选:C.
6.(3分)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有( )
A.3种 B.4种 C.5种 D.6种
【解答】解:共有6种拼接法,如图所示.
故选:D.
二、填空题(本大题共6小题,每小题3分,共18分)
7.(3分)因式分解:x2﹣1= (x+1)(x﹣1) .
【解答】解:原式=(x+1)(x﹣1).
故答案为:(x+1)(x﹣1).
8.(3分)我国古代数学名著《孙子算经》有估算方法:“方五,邪(通“斜”)七.见方求邪,七之,五而一.”译文为:如果正方形的边长为五,则它的对角线长为七.已知正方形的边长,求对角线长,则先将边长乘以七再除以五.若正方形的边长为1,由勾股定理得对角线长为2,依据《孙子算经》的方法,则它的对角线的长是 1.4 .
【解答】解:根据题意可得:正方形边长为1的对角线长=1×75=1.4
故答案为:1.4
9.(3分)设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2= 0 .
【解答】解:∵x1、x2是方程x2﹣x﹣1=0的两根,
∴x1+x2=1,x1×x2=﹣1,
∴x1+x2+x1x2=1﹣1=0.
故答案为:0.
10.(3分)如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,则∠CDE= 20 °.
【解答】解:∵∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,
∴∠ADC=40°+40°=80°,∠ADE=∠ADB=180°﹣40°﹣40°=100°,
∴∠CDE=100°﹣80°=20°,
故答案为:20
11.(3分)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A﹣B﹣C横穿双向行驶车道,其中AB=BC=6米,在绿灯亮时,小明共用11秒通过AC,其中通过BC的速度是通过AB速度的1.2倍,求小明通过AB时的速度.设小明通过AB时的速度是x米/秒,根据题意列方程得: 6x+61.2x=11 .
【解答】解:设小明通过AB时的速度是x米/秒,可得:6x+61.2x=11,
故答案为:6x+61.2x=11,
12.(3分)在平面直角坐标系中,A,B,C三点的坐标分别为(4,0),(4,4),(0,4),点P在x轴上,点D在直线AB上,若DA=1,CP⊥DP于点P,则点P的坐标为
(2,0)或(2﹣22,0)或(2+22,0) .
【解答】解:∵A,B两点的坐标分别为(4,0),(4,4)
∴AB∥y轴
∵点D在直线AB上,DA=1
∴D1(4,1),D2(4,﹣1)
如图:
(Ⅰ)当点D在D1处时,要使CP⊥DP,即使△COP1≌△P1AD1
∴COP1A=OP1AD1
即44-OP=OP1
解得:OP1=2
∴P1(2,0)
(Ⅱ)当点D在D2处时,
∵C(0,4),D2(4,﹣1)
∴CD2的中点E(2,32)
∵CP⊥DP
∴点P为以E为圆心,CE长为半径的圆与x轴的交点
设P(x,0),则PE=CE
即(2-x)2+(32-0)2=22+(32-4)2
解得:x=2±22
∴P2(2﹣22,0),P3(2+22,0)
综上所述:点P的坐标为(2,0)或(2﹣22,0)或(2+22,0).
三、(本大题共5小题,每小题6分,共30分)
13.(6分)(1)计算:﹣(﹣1)+|﹣2|+(2019-2)0;
(2)如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.
【解答】解:(1)﹣(﹣1)+|﹣2|+(2019-2)0
=1+2+1
=4;
(2)证明:∵四边形ABCD中,AB=CD,AD=BC,
∴四边形ABCD是平行四边形,
∴AC=2AO,BD=2OD,
∵OA=OD,
∴AC=BD,
∴四边形ABCD是矩形.
14.(6分)解不等式组:2(x+1)>x1-2x≥x+72并在数轴上表示它的解集.
【解答】解:2(x+1)>x①1-2x≥x+72②,
解①得:x>﹣2,
解②得:x≤﹣1,
故不等式组的解为:﹣2<x≤﹣1,
在数轴上表示出不等式组的解集为:
.
15.(6分)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).
(1)在图1中作弦EF,使EF∥BC;
(2)在图2中以BC为边作一个45°的圆周角.
【解答】解:(1)如图1,EF为所作;
(2)如图2,∠BCD为所作.
16.(6分)为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.
(1)八(1)班抽中歌曲《我和我的祖国》的概率是 13 ;
(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
【解答】解:(1)因为有A,B,C3种等可能结果,
所以八(1)班抽中歌曲《我和我的祖国》的概率是13;
故答案为13.
(2)树状图如图所示:
共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率=69=23.
17.(6分)如图,在平面直角坐标系中,点A,B的坐标分别为(-32,0),(32,1),连接AB,以AB为边向上作等边三角形ABC.
(1)求点C的坐标;
(2)求线段BC所在直线的解析式.
【解答】解:(1)如图,过点B作BH⊥x轴
∵点A坐标为(-32,0),点B坐标为(32,1)
∴|AB|=(0-1)2+(-32-32)2=2
∵BH=1
∴sin∠BAH=BHAB=12
∴∠BAH=30°
∵△ABC为等边三角形
∴AB=AC=2
∴∠CAB+∠BAH=90°
∴点C的纵坐标为2
∴点C的坐标为(-32,2)
(2)由(1)知点C的坐标为(-32,2),点B的坐标为(32,1),设直线BC的解析式为:y=kx+b
则1=32k+b2=-32k+b,解得k=-33b=32
故直线BC的函数解析式为y=-33x+32
四、(本大题共3小题,每小题8分,共24分)
18.(8分)某校为了解七、八年级学生英语听力训练情况(七、八年级学生人数相同),某周从这两个年级学生中分别随机抽查了30名同学,调查了他们周一至周五的听力训练情况,根据调查情况得到如下统计图表:
周一至周五英语听力训练人数统计表
年级
参加英语听力训练人数
周一
周二
周三
周四
周五
七年级
15
20
a
30
30
八年级
20
24
26
30
30
合计
35
44
51
60
60
(1)填空:a= 25 ;
(2)根据上述统计图表完成下表中的相关统计量:
年级
平均训练时间的中位数
参加英语听力训练人数的方差
七年级
24
34
八年级
27
14.4
(3)请你利用上述统计图表对七、八年级英语听力训练情况写出两条合理的评价;
(4)请你结合周一至周五英语听力训练人数统计表,估计该校七、八年级共480名学生中周一至周五平均每天有多少人进行英语听力训练.
【解答】解:(1)由题意得:a=51﹣26=25;
故答案为:25;
(2)按照从小到大的顺序排列为:18、25、27、30、30,
∴八年级平均训练时间的中位数为:27;
故答案为:27;
(3)参加训练的学生人数超过一半;训练时间比较合理;
(4)抽查的七、八年级共60名学生中,周一至周五训练人数的平均数为15(35+44+51+60+60)=50,
∴该校七、八年级共480名学生中周一至周五平均每天进行英语听力训练的人数为480×5060=400(人).
19.(8分)如图1,AB为半圆的直径,点O为圆心,AF为半圆的切线,过半圆上的点C作CD∥AB交AF于点D,连接BC.
(1)连接DO,若BC∥OD,求证:CD是半圆的切线;
(2)如图2,当线段CD与半圆交于点E时,连接AE,AC,判断∠AED和∠ACD的数量关系,并证明你的结论.
【解答】(1)证明:连接OC,
∵AF为半圆的切线,AB为半圆的直径,
∴AB⊥AD,
∵CD∥AB,BC∥OD,
∴四边形BODC是平行四边形,
∴OB=CD,
∵OA=OB,
∴CD=OA,
∴四边形ADCO是平行四边形,
∴OC∥AD,
∵CD∥BA,
∴CD⊥AD,
∵OC∥AD,
∴OC⊥CD,
∴CD是半圆的切线;
(2)解:∠AED+∠ACD=90°,
理由:如图2,连接BE,
∵AB为半圆的直径,
∴∠AEB=90°,
∴∠EBA+∠BAE=90°,
∵∠DAE+∠BAE=90°,
∴∠ABE+∠DAE,
∵∠ACE=∠ABE,
∴∠ACE=∠DAE,
∵∠ADE=90°,
∴∠DAE+∠AED=∠AED+∠ACD=90°.
20.(8分)图1是一台实物投影仪,图2是它的示意图,折线B﹣A﹣O表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=6.8cm,CD=8cm,AB=30cm,BC=35cm.(结果精确到0.1).
(1)如图2,∠ABC=70°,BC∥OE.
①填空:∠BAO= 160 °.
②求投影探头的端点D到桌面OE的距离.
(2)如图3,将(1)中的BC向下旋转,当投影探头的端点D到桌面OE的距离为6cm时,求∠ABC的大小.
(参考数据:sin70°≈0.94,cos20°≈0.94,sin36.8°≈0.60,cos53.2°≈0.60)
【解答】解:(1)①过点A作AG∥BC,如图1,则∠BAG=∠ABC=70°,
∵BC∥OE,
∴AG∥OE,
∴∠GAO=∠AOE=90°,
∴∠BAO=90°+70°=160°,
故答案为:160;
②过点A作AF⊥BC于点F,如图2,
则AF=AB•sin∠ABE=30sin70°≈28.2(cm),
∴投影探头的端点D到桌面OE的距离为:AF+0A﹣CD=28.2+6.8﹣8=27(cm);
(2)过点DE⊥OE于点H,过点B作BM⊥CD,与DC延长线相交于点M,过A作AF⊥BM于点F,如图3,
则∠MBA=70°,AF=28.2cm,DH=6cm,BC=30cm,CD=8cm,
∴CM=AF+AO﹣DH﹣CD=28.2+6.8﹣6﹣8=21(cm),
∴sin∠MBC=CMBC=2135=0.6,
∴∠MBC=36.8°,
∴∠ABC=∠ABM﹣∠MBC=33.2°.
五、(本大题共2小题,每小题9分,共18分)
21.(9分)数学活动课上,张老师引导同学进行如下探究:
如图1,将长为12cm的铅笔AB斜靠在垂直于水平桌面AE的直尺FO的边沿上,一端A固定在桌面上,图2是示意图.
活动一
如图3,将铅笔AB绕端点A顺时针旋转,AB与OF交于点D,当旋转至水平位置时,铅笔AB的中点C与点O重合.
数学思考
(1)设CD=xcm,点B到OF的距离GB=ycm.
①用含x的代数式表示:AD的长是 (6+x) cm,BD的长是 (6﹣x) cm;
②y与x的函数关系式是 y=36-6x6+x ,自变量x的取值范围是 0≤x≤6 .
活动二
(2)①列表:根据(1)中所求函数关系式计算并补全表格
x(cm)
6
5
4
3.5
3
2.5
2
1
0.5
0
y(cm)
0
0.55
1.2
1.58
2
2.47
3
4.29
5.08
6
②描点:根据表中数值,继续描出①中剩余的两个点(x,y).
③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.
数学思考
(3)请你结合函数的图象,写出该函数的两条性质或结论.
【解答】解:(1)①如图3中,由题意AC=OA=12AB=6(cm),
∵CD=xcm,
∴AD=(6+x)(cm),BD=12﹣(6+x)=(6﹣x)(cm),
故答案为:(6+x),(6﹣x).
②作BG⊥OF于G.
∵OA⊥OF,BG⊥OF,
∴BG∥OA,
∴BGOA=BDAD,
∴y6=6-x6+x,
∴y=36-6x6+x(0≤x≤6),
故答案为:y=36-6x6+x,0≤x≤6.
(2)①当x=3时,y=2,当x=0时,y=6,
故答案为2,6.
②点(0,6),点(3,2)如图所示.
③函数图象如图所示.
(3)性质1:函数值y的取值范围为0≤y≤6.
性质2:函数图象在第一象限,y随x的增大而减小.
22.(9分)在图1,2,3中,已知▱ABCD,∠ABC=120°,点E为线段BC上的动点,连接AE,以AE为边向上作菱形AEFG,且∠EAG=120°.
(1)如图1,当点E与点B重合时,∠CEF= 60 °;
(2)如图2,连接AF.
①填空:∠FAD = ∠EAB(填“>”,“<“,“=”);
②求证:点F在∠ABC的平分线上;
(3)如图3,连接EG,DG,并延长DG交BA的延长线于点H,当四边形AEGH是平行四边形时,求BCAB的值.
【解答】解:(1)∵四边形AEFG是菱形,
∴∠AEF=180°﹣∠EAG=60°,
∴∠CEF=∠AEC﹣∠AEF=60°,
故答案为:60°;
(2)①∵四边形ABCD是平行四边形,
∴∠DAB=180°﹣∠ABC=60°,
∵四边形AEFG是菱形,∠EAG=120°,
∴∠FAE=60°,
∴∠FAD=∠EAB,
故答案为:=;
②作FM⊥BC于M,FN⊥BA交BA的延长线于N,
则∠FNB=∠FMB=90°,
∴∠NFM=60°,又∠AFE=60°,
∴∠AFN=∠EFM,
∵EF=EA,∠FAE=60°,
∴△AEF为等边三角形,
∴FA=FE,
在△AFN和△EFM中,
∠AFN=∠EFM∠FNA=∠FMEFA=FE,
∴△AFN≌△EFM(AAS)
∴FN=FM,又FM⊥BC,FN⊥BA,
∴点F在∠ABC的平分线上;
(3)∵四边形AEFG是菱形,∠EAG=120°,
∴∠AGF=60°,
∴∠FGE=∠AGE=30°,
∵四边形AEGH为平行四边形,
∴GE∥AH,
∴∠GAH=∠AGE=30°,∠H=∠FGE=30°,
∴∠GAN=90°,又∠AGE=30°,
∴GN=2AN,
∵∠DAB=60°,∠H=30°,
∴∠ADH=30°,
∴AD=AH=GE,
∵四边形ABCD为平行四边形,
∴BC=AD,
∴BC=GE,
∵四边形ABEH为平行四边形,∠HAE=∠EAB=30°,
∴平行四边形ABEN为菱形,
∴AB=AN=NE,
∴GE=3AB,
∴BCAB=3.
六、(本大题共12分)
23.(12分)特例感知
(1)如图1,对于抛物线y1=﹣x2﹣x+1,y2=﹣x2﹣2x+1,y3=﹣x2﹣3x+1,下列结论正确的序号是 ①②③ ;
①抛物线y1,y2,y3都经过点C(0,1);
②抛物线y2,y3的对称轴由抛物线y1的对称轴依次向左平移12个单位得到;
③抛物线y1,y2,y3与直线y=1的交点中,相邻两点之间的距离相等.
形成概念
(2)把满足yn=﹣x2﹣nx+1(n为正整数)的抛物线称为“系列平移抛物线”.
知识应用
在(2)中,如图2.
①“系列平移抛物线”的顶点依次为P1,P2,P3,…,Pn,用含n的代数式表示顶点Pn的坐标,并写出该顶点纵坐标y与横坐标x之间的关系式;
②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:C1,C2,C3,…,∁n,其横坐标分别为﹣k﹣1,﹣k﹣2,﹣k﹣3,…,﹣k﹣n(k为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.
③在②中,直线y=1分别交“系列平移抛物线”于点A1,A2,A3,…,An,连接∁nAn,Cn﹣1An﹣1,判断∁nAn,Cn﹣1An﹣1是否平行?并说明理由.
【解答】解:(1)①当x=0时,分别代入抛物线y1,y2,y3,即可得y1=y2=y3=1;①正确;
②y2=﹣x2﹣2x+1,y3=﹣x2﹣3x+1的对称轴分别为x=﹣1,x=-32,
y1=﹣x2﹣x+1的对称轴x=-12,
由x=-12向左移动12得到x=﹣1,再向左移动12得到x=-32,
②正确;
③当y=1时,则﹣x2﹣x+1=1,
∴x=0或x=﹣1;
﹣x2﹣2x+1=1,
∴x=0或x=﹣2;
﹣x2﹣3x+1=1,
∴x=0或x=﹣3;
∴相邻两点之间的距离都是1,
③正确;
故答案为①②③;
(2)①yn=﹣x2﹣nx+1的顶点为(-n2,n2+44),
令x=-n2,y=n2+44,
∴y=x2+1;
②∵横坐标分别为﹣k﹣1,﹣k﹣2,﹣k﹣3,…,﹣k﹣n(k为正整数),
当x=﹣k﹣n时,y=﹣k2﹣nk+1,
∴纵坐标分别为﹣k2﹣k+1,﹣k2﹣2k+1,﹣k2﹣3k+1,…,﹣k2﹣nk+1,
∴相邻两点间距离分别为1+k2;
∴相邻两点之间的距离都相等;
③当y=1时,﹣x2﹣nx+1=1,
∴x=0或x=﹣n,
∴A1(﹣1,1),A2(﹣2,1),A3(﹣3,1),…,An(﹣n,1),
C1(﹣k﹣1,﹣k2﹣k+1),C2(﹣k﹣2,﹣k2﹣2k+1),C3(﹣k﹣3,﹣k2﹣3k+1),…,∁n(﹣k﹣n,﹣k2﹣nk+1),
∵-k2-k+1-1-k-1+1=k+1,-k2-2k+1-1-k-2+2=k+1,-k2-3k+1-1-k-3+3=k+1,…,-k2-nk+1-1-k-n+n=k+1,
∴∁nAn∥Cn﹣1An﹣1;
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2019/6/30 10:00:02;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521
相关文档
- 2018年江苏省盐城市中考数学试卷含2021-11-1115页
- 2019年浙江省湖州市中考数学试卷含2021-11-1125页
- 2018年贵州省遵义市中考数学试卷含2021-11-1110页
- 2019年山东省枣庄市中考数学试卷含2021-11-1128页
- 广西玉林市中考数学试卷含答案解析2021-11-1126页
- 2019年浙江省舟山市中考数学试卷含2021-11-1128页
- 2018年湖北省十堰市中考数学试卷含2021-11-1111页
- 齐齐哈尔市中考数学试卷含答案解析2021-11-1135页
- 2018年宁夏中考数学试卷含答案2021-11-1110页
- 2018年山东省菏泽市中考数学试卷含2021-11-1120页