- 111.00 KB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
29.2 三视图
第2课时 由三视图确定几何体
【学习目标】
1、学会根据物体的三视图描述出几何体的基本形状或实物原型。
2、经历探索简单的几何体的三视图的还原,进一步发展空间想象能力。
【学习重点】根据三视图描述基本几何体和实物原型。
【学习难点】根据三视图想象基本几何体实物原型。
【学习过程】
【复习引入】
前面我们讨论了由立体图形(实物)画出三视图,那么由三视图能否也想象出立体图形(实物)呢?
【合作探究】
1.完成课本例4:根据下面的三视图说出立体图形的名称.
分析:由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形.
(1)从三个方向看立体图形,图象都是矩形,可以想象出:整体是 ,如图(1)所示;
(2)从正面、侧面看立体图形,图象都是等腰三角形;从上面看,图象是圆;可以想象出:整体是 ,如图(2)所示.
2.完成课本例5根据物体的三视图,如下图(1),描述物体的形状.
[来源:Z&xx&k.Com]
分析.由主视图可知,物体正面是正五边形,由俯视图可知,由上向下看物体是矩形的,且有一条棱(中间的实线)可见到。两条棱(虚线)被遮挡,由左视图知,物体的侧面是矩形的.且有一条棱〔中间的实线)可见到,综合各视图可知,物体是 形状的,如上图(2)所示.
3.画出符合下列三视图的小立方块构成的几何体。
分析:首先应由三种视图从三个方向确定分别有几层,每层有几个,每个小正方体的具体位置在哪儿?画出之后再看一是否和所给三视图保持一致
[来源:学|科|网]
【自主探究】[来源:Zxxk.Com]
完成课本99页练习
【归纳总结】
1、一个视图不能确定物体的空间形状,根据三视图要描述几何体或实物原型时,必须将各视图对照起来看.
2、一个摆好的几何体的视图是唯一的,但从视图反过来考虑几何体时,它有多种可能性。例如:正方体的主视图是正方形,但主视图是正方形的几何体有直三棱柱、长方体、圆柱等.[来源:学科网]
3、对于较复杂的物体,由三视图想象出物体的原型,应搞清三个视图之间的前后、左右、上下的对应关系.[来源:Zxxk.Com]
【布置作业】
教材习题29.2 必做题: 4,5