- 2.73 MB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
3.5 圆周角(2)
(见A本29页)
A 练就好基础 基础达标
1.使用直角钢尺检查某一工件是否恰好是半圆形的凹面,成半圆形的为合格.如图所示的四种情况中合格的是( C )
A. B. C. D.
2.如图所示,两灯塔A,B间的距离恰好为暗礁区所在的圆的半径,要使船S不驶入暗礁区,则航行中应保持∠ASB( D )
A.大于60° B.大于30° C.小于60° D.小于30°
第2题图
第3题图
3.如图所示,A,B,C,D四个点在同一个圆上,在四边形ABCD 的对角线把4个内角分成的8个角中,相等的角有( C )
A.2对 B.3对 C.4对 D.5对
4.如图所示,P为正三角形ABC外接圆上一点,则∠APB等于( D )
A.150° B.135° C.115° D.120°
5
第4题图
第5题图
5.2017·海南中考如图所示,点A,B,C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为( B )
A.25° B.50° C.60° D.80°
第6题图
6.如图所示,AB是⊙O的直径,半径OC⊥AB,过OC的中点D作EF∥AB,则∠EBA=__15°__.
7.如图所示,△ABC是⊙O的内接三角形,BC=4 cm,∠A=30°,则△OBC的面积为__4__cm2.
第7题图
第8题图
8.2017·新疆中考如图所示,⊙O的半径OD垂直于弦AB,垂足为点C,连结AO并延长交⊙O于点E,连结BE,CE.若AB=8,CD=2,则△BCE的面积为__12__.
第9题图
9.如图所示,已知圆的两弦AB,CD相交于点P,AD,CB的延长线相交于圆外一点Q,∠AQC=36°,∠ABC=58°. 求∠BCD和∠APC的度数.
解:∵∠ABC=58°,∠AQC=36°,
5
又∵∠ABC=∠AQC+∠A,
∴∠A=58°-36°=22°.
由得∠BCD=∠A=22°,
∴∠APC=∠C+∠ABC=22°+58°=80°.
第10题图
10.如图所示,自⊙O上一点A引三条弦AB,AC,AD,且AC平分∠BAD,过点C作弦CE∥AB交AD于点F,线段DF与EF相等吗?为什么?
解:线段DF=EF.
理由如下:连结DE,∵AC平分∠BAD,
∴∠BAC=∠DAC.∵CE∥AB,∴∠BAC=∠C,
又∵∠DAC=∠E,∠C=∠D,∴∠D=∠E,∴DF=EF.
B 更上一层楼 能力提升
11.如图所示,∠AOB=100°,则∠A+∠B等于( C )
A.100° B.80° C.50° D.40°
第11题图
第12题图
12.2017·贵港中考如图所示,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点,若∠BDC=40°,则∠AMB的度数不可能是( D )
A.45° B.60° C.75° D.85°
第13题图
13.2017·海南中考如图所示,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M,N分别是AB,AC的中点,则MN长的最大值是____.
5
第14题图
14.如图所示,△ABC为圆内接三角形,AB>AC,∠A的平分线AD交圆于点D,作DE⊥AB于E,DF⊥AC于F.
求证:BE=CF.
证明:连结BD,DC,
∵AD平分∠BAF,DE⊥AB,DF⊥AF,
∴∠BAD=∠FAD,DE=DF,∴=,
∴BD=CD,∵∠BED=∠DFC=90°.
∴Rt△BDE≌Rt△CDF,∴BE=CF.
C 开拓新思路 拓展创新
15.已知,如图所示,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O 于点D,DE⊥AB于点E,且交AC于点P,连结AD.求证:
(1)∠DAC=∠DBA;
(2)点P是线段AF的中点.
第15题图
证明:(1)∵BD平分∠CBA,∴∠CBD=∠DBA,
∵∠DAC与∠CBD都是所对的圆周角,
∴∠DAC=∠CBD,∴∠DAC=∠DBA.
(2)∵AB为直径,∴∠ADB=90°.
∵DE⊥AB于点E,∴∠DEB=90°,
∴∠ADE+∠EDB=∠ABD+∠EDB=90°,
∴∠ADE=∠ABD=∠DAP,
∴PD=PA,
∵∠DFA+∠DAC=∠ADE+∠PDF=90°,且∠ADB=90°,
∴∠PDF=∠PFD,∴PD=PF,
∴PA=PF,即点P是线段AF的中点.
16.潍坊中考正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连结DE,BE,过点D作DF∥BE交⊙O于点F,连结BF,AF,且AF与DE相交于点G.求证:
(1)四边形EBFD是矩形;
5
(2)DG=BE.
第16题图
证明:(1)∵正方形ABCD内接于⊙O,
∴∠BED=∠BAD=90°,∠BFD=∠BCD=90°,
又∵DF∥BE,∴∠EDF+∠BED=180°,
∴∠EDF=90°,
∴四边形EBFD是矩形.
(2)∵正方形ABCD内接于⊙O,
∴的度数是90°,∴∠AFD=45°,
又∵∠GDF=90°,∴∠DGF=∠DFG=45°,
∴DG=DF,
又∵在矩形EBFD中,BE=DF,
∴BE=DG.
5
相关文档
- 【教材梳理+中考夺分】初中数学中2021-11-1125页
- 初中道德与法2020年中考重点词练习2021-11-118页
- 2019年苏州市初中毕业暨升学考试数2021-11-1117页
- 2020届初中生物中考一轮复习考点测2021-11-116页
- 江苏省镇江市丹徒区2020届九年级上2021-11-116页
- 初中物理学业水平考试总复习 专项2021-11-119页
- 初中数学中考总复习课件PPT:第4课时2021-11-1117页
- 初中数学中考复习课件章节考点专题2021-11-1120页
- 初中物理中考复习课件:8比值问题2021-11-1111页
- 初中地理学业水平考试模拟卷(附参考2021-11-1115页