- 381.17 KB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018年浙江省嘉兴市中考数学试卷
一、选择题(本题有10小题,每题3分,共30分。请选出各题中唯一的正确选项,不选、多选、错选,均不得分)
1.(3分)下列几何体中,俯视图为三角形的是( )
A. B. C. D.
2.(3分)2018年5月25日,中国探月工程的“鹊桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1500000km,数1500000用科学记数法表示为( )
A.15×105 B.1.5×106 C.0.15×107 D.1.5×105
3.(3分)2018年1~4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是( )
A.1月份销量为2.2万辆
B.从2月到3月的月销量增长最快
C.4月份销量比3月份增加了1万辆
D.1~4月新能源乘用车销量逐月增加
4.(3分)不等式1﹣x≥2的解在数轴上表示正确的是( )
A. B. C. D.
5.(3分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是( )
20
A. B. C. D.
6.(3分)用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是( )
A.点在圆内 B.点在圆上
C.点在圆心上 D.点在圆上或圆内
7.(3分)欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是( )
A.AC的长 B.AD的长 C.BC的长 D.CD的长
8.(3分)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是( )
A. B. C. D.
9.(3分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为( )
20
A.1 B.2 C.3 D.4
10.(3分)某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( )
A.甲 B.甲与丁 C.丙 D.丙与丁
二、填空题(本题有6小题,每题4分,共24分)
11.(4分)分解因式:m2﹣3m= .
12.(4分)如图,直线l1∥l2∥l3,直线AC交l1,l2,l3于点A,B,C;直线DF交l1,l2,l3于点D,E,F,已知=,则= .
13.(4分)小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我嬴.”小红赢的概率是 ,据此判断该游戏 (填“公平”或“不公平”).
14.(4分)如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为 cm.
15.(4分)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程: .
20
16.(4分)如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是 .
三、解答题(本题有8小题,第17~19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分)
17.(6分)(1)计算:2(﹣1)+|﹣3|﹣(﹣1)0;
(2)化简并求值()•,其中a=1,b=2.
18.(6分)用消元法解方程组时,两位同学的解法如下:
解法一:
由①﹣②,得3x=3.
解法二:
由②得,3x+(x﹣3y)=2,③
把①代入③,得3x+5=2.
(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“ד.
(2)请选择一种你喜欢的方法,完成解答.
19.(6分)已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.
20.(8分)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格),随机各抽取了20个样品进行检测,过程如下:
20
收集数据(单位:mm)
甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.
乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.
整理数据:
165.5~170.5
170.5~175.5
175.5~180.5
180.5~185.5
185.5~190.5
190.5~195.5
甲车间
2
4
5
6
2
1
乙车间
1
2
a
b
2
0
分析数据:
车间
平均数
众数
中位数
方差
甲车间
180
185
180
43.1
乙车间
180
180
180
22.6
应用数据:
(1)计算甲车间样品的合格率.
(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?
(3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.
21.(8分)小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.
(1)根据函数的定义,请判断变量h是否为关于t的函数?
(2)结合图象回答:
①当t=0.7s时,h的值是多少?并说明它的实际意义.
②秋千摆动第一个来回需多少时间?
20
22.(10分)如图1,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD的中点,AC=2.8m,PD=2m,CF=1m,∠DPE=20°,当点P位于初始位置P0时,点D与C重合(图2).根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳.
(1)上午10:00时,太阳光线与地面的夹角为65°(图3),为使遮阳效果最佳,点P需从P0上调多少距离?(结果精确到0.1m)
(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P在(1)的基础上还需上调多少距离?(结果精确到0.1m)(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41,≈1.73)
23.(10分)已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.
(1)判断顶点M是否在直线y=4x+1上,并说明理由.
(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.
(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小.
20
24.(12分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.
(1)概念理解:
如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.
(2)问题探究:
如图2,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.
(3)应用拓展:
如图3,已知l1∥l2,l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l2于点D.求CD的值.
20
2018年浙江省嘉兴市中考数学试卷
参考答案与试题解析
一、选择题(本题有10小题,每题3分,共30分。请选出各题中唯一的正确选项,不选、多选、错选,均不得分)
1.
【解答】解:A、俯视图是圆,故A不符合题意;
B、俯视图是矩形,故B不符合题意;
C、俯视图是三角形,故C符合题意;
D、俯视图是四边形,故D不符合题意;
故选:C.
2.
【解答】解:1500000=1.5×106,
故选:B.
3.
【解答】解:由图可得,
1月份销量为2.2万辆,故选项A正确,
从2月到3月的月销量增长最快,故选项B正确,
4月份销量比3月份增加了4.3﹣3.3=1万辆,故选项C正确,
1~2月新能源乘用车销量减少,2~4月新能源乘用车销量逐月增加,故选项D错误,
故选:D.
4.
【解答】解:不等式1﹣x≥2,
20
解得:x≤﹣1,
表示在数轴上,如图所示:
故选:A.
5.
【解答】解:由于得到的图形的中间是正方形,且顶点在原来的正方形的对角线上,
故选:A.
6.
【解答】解:反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是:点在圆上或圆内.
故选:D.
7.
【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.
则该方程的一个正根是AD的长,
故选:B.
8.
【解答】解:A、作图根据由作图可知,AC⊥BD,且平分BD,即对角线平分且垂直的四边形是菱形,正确;
B、由作图可知AB=BC,AD=AB,即四边相等的四边形是菱形,正确;
C、由作图可知AB=DC,AD=BC,只能得出ABCD是平行四边形,错误;
D、由作图可知对角线AC平分对角,可以得出是菱形,正确;
故选:C.
20
9.
【解答】解:设点A的坐标为(a,0),
∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,
∴点C(﹣a,),
∴点B的坐标为(0,),
∴=1,
解得,k=4,
故选:D.
10.
【解答】解:∵甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,
∴甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,
∵甲、乙都没有输球,∴甲一定与乙平,
∵丙得分3分,1胜0平,乙得分5分,1胜2平,
∴与乙打平的球队是甲与丁.
故选:B.
二、填空题(本题有6小题,每题4分,共24分)
11.
【解答】解:m2﹣3m=m(m﹣3).
故答案为:m(m﹣3).
12.
【解答】解:∵=,
20
∴=2,
∵l1∥l2∥l3,
∴==2,
故答案为:2.
13.
【解答】解:所有可能出现的结果如下表所示:
正
反
正
(正,正)
(正,反)
反
(反,正)
( 反,反)
因为抛两枚硬币,所有机会均等的结果为:正正,正反,反正,反反,
所以出现两个正面的概率为,一正一反的概率为=,
因为二者概率不等,所以游戏不公平.
故答案为:,不公平.
14.
【解答】解:连接OC,
∵直尺一边与量角器相切于点C,
∴OC⊥AD,
∵AD=10,∠DOB=60°,
∴∠DAO=30°,
∴OE=,OA=,
∴CE=OC﹣OE=OA﹣OE=,
故答案为:
20
15.
【解答】解:设设甲每小时检测x个,则乙每小时检测(x﹣20)个,
根据题意得,=(1﹣10%),
故答案为=×(1﹣10%).
16.
【解答】解:∵△EFP是直角三角形,且点P在矩形ABCD的边上,
∴P是以EF为直径的圆O与矩形ABCD的交点,
①当AF=0时,如图1,此时点P有两个,一个与D重合,一个交在边AB上;
②当⊙O与AD相切时,设与AD边的切点为P,如图2,
此时△EFP是直角三角形,点P只有一个,
当⊙O与BC相切时,如图4,连接OP,此时构成三个直角三角形,
则OP⊥BC,设AF=x,则BF=P1C=4﹣x,EP1=x﹣1,
∵OP∥EC,OE=OF,
∴OG=EP1=,
∴⊙O的半径为:OF=OP=,
在Rt△OGF中,由勾股定理得:OF2=OG2+GF2,
∴,
解得:x=,
∴当1<AF<时,这样的直角三角形恰好有两个,
③当AF=4,即F与B重合时,这样的直角三角形恰好有两个,如图5,
20
综上所述,则AF的值是:0或1<AF或4.
故答案为:0或1<AF或4.
三、解答题(本题有8小题,第17~19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分)
17.
【解答】解:(1)原式=4﹣2+3﹣1=4;
(2)原式=•=a﹣b;
当a=1,b=2时,原式=1﹣2=﹣1.
18.
【解答】解:(1)解法一中的解题过程有错误,
由①﹣②,得3x=3“×”,
应为由①﹣②,得﹣3x=3;
20
(2)由①﹣②,得﹣3x=3,解得x=﹣1,
把x=﹣1代入①,得﹣1﹣3y=5,解得y=﹣2.
故原方程组的解是.
19.
【解答】证明:∵DE⊥AB,DF⊥BC,垂足分别为点E,F,
∴∠AED=∠CFD=90°,
∵D为AC的中点,
∴AD=DC,
在Rt△ADE和Rt△CDF中,
,
∴Rt△ADE≌Rt△CDF,
∴∠A=∠C,
∴BA=BC,∵AB=AC,
∴AB=BC=AC,
∴△ABC是等边三角形.
20.
【解答】解:(1)甲车间样品的合格率为:×100%=55%;
(2)∵乙车间样品的合格产品数为:20﹣(1+2+2)=15(个),
∴乙车间样品的合格率为:×100%=75%,
∴乙车间的合格产品数为:1000×75%=750(个);
(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好;
②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比较稳定,所以乙车间生产的新产品更好.
20
21.
【解答】解:(1)由图象可知,
对于每一个摆动时间t,h都有唯一确定的值与其对应,
∴变量h是关于t的函数;
(2)①由函数图象可知,
当t=0.7s时,h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度是0.5m;
②由图象可知,
秋千摆动第一个来回需2.8s.
22.
【解答】解:(1)如图2中,当P位于初始位置时,CP0=2m,
如图3中,上午10:00时,太阳光线与地面的夹角为65°,上调的距离为P0P1.
∵∠1=90°,∠CAB=90°,∠ABE=65°,
∴∠AP1E=115°,
∴∠CP1E=65°,
∵∠DP1E=20°,
∴∠CP1F=45°,
∵CF=P1F=1m,
∴∠C=∠CP1F=45°,
∴△CP1F是等腰直角三角形,
∴P1C=m,
∴P0P1=CP0﹣P1C=2﹣≈0.6m,
20
即为使遮阳效果最佳,点P需从P0上调0.6m.
(2)如图4中,中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P调到P2处.
∵P2E∥AB,
∴∠CP2E=∠CAB=90°,
∵∠DP2E=20°,
∴∠CP2F=70°,作FG⊥AC于G,则CP2=2CG=1×cos70°≈0.68m,
∴P1P2=CP1﹣CP2=﹣0.68≈0.7m,
即点P在(1)的基础上还需上调0.7m.
23.
【解答】解:(1)点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,
∴M的坐标是(b,4b+1),
把x=b代入y=4x+1,得y=4b+1,
∴点M在直线y=4x+1上;
(2)如图1,
直线y=mx+5交y轴于点B,
∴B点坐标为(0,5)又B在抛物线上,
20
∴5=﹣(0﹣b)2+4b+1=5,解得b=2,
二次函数的解析是为y=﹣(x﹣2)2+9,
当y=0时,﹣(x﹣2)2+9=0,解得x1=5,x2=﹣1,
∴A(5,0).
由图象,得
当mx+5>﹣(x﹣b)2+4b+1时,x的取值范围是x<0或x>5;
(3)如图2,
∵直线y=4x+1与直线AB交于点E,与y轴交于F,
A(5,0),B(0,5)得
直线AB的解析式为y=﹣x+5,
联立EF,AB得
方程组,
解得,
∴点E(,),F(0,1).
点M在△AOB内,
1<4b+1<
∴0<b<.
当点C,D关于抛物线的对称轴对称时,b﹣=﹣b,∴b=,
且二次函数图象开口向下,顶点M在直线y=4x+1上,
20
综上:①当0<b<时,y1>y2,
②当b=时,y1=y2,
③当<b<时,y1<y2.
24.
【解答】解:(1)△ABC是“等高底”三角形;
理由:如图1,过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,
∵∠ACB=30°,AC=6,
∴AD=AC=3,
∴AD=BC=3,
即△ABC是“等高底”三角形;
(2)如图2,∵△ABC是“等高底”三角形,BC是“等底”,
∴AD=BC,
∵△ABC关于BC所在直线的对称图形是△A'BC,
∴∠ADC=90°,
∵点B是△AA′C的重心,
∴BC=2BD,
设BD=x,则AD=BC=2x,CD=3x,
由勾股定理得AC=x,
20
∴==;
(3)①当AB=BC时,
Ⅰ.如图3,作AE⊥BC于E,DF⊥AC于F,
∵“等高底”△ABC的“等底”为BC,l1∥l2,l1与l2之间的距离为2,AB=BC,
∴BC=AE=2,AB=2,
∴BE=2,即EC=4,
∴AC=2,
∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,
∴∠DCF=45°,
设DF=CF=x,
∵l1∥l2,
∴∠ACE=∠DAF,
∴==,即AF=2x,
∴AC=3x=2,
∴x=,CD=x=.
Ⅱ.如图4,此时△ABC等腰直角三角形,
∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,
∴△ACD是等腰直角三角形,
∴CD=AC=2.
20
②当AC=BC时,
Ⅰ.如图5,此时△ABC是等腰直角三角形,
∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,
∴A'C⊥l1,
∴CD=AB=BC=2;
Ⅱ.如图6,作AE⊥BC于E,则AE=BC,
∴AC=BC=AE,
∴∠ACE=45°,
∴△ABC绕点C按顺时针方向旋转45°,得到△A'B'C时,点A'在直线l1上,
∴A'C∥l2,即直线A'C与l2无交点,
综上所述,CD的值为,2,2.
20
相关文档
- 四川省宜宾市中考数学试卷含答案解2021-11-1130页
- 2019年山东省菏泽市中考数学试卷含2021-11-1126页
- 大庆市中考数学试卷含答案解析2021-11-1128页
- 2019年江苏省南京市中考数学试卷含2021-11-1112页
- 2019年湖南省株洲市中考数学试卷含2021-11-1129页
- 湖南省湘潭市中考数学试卷含答案2021-11-1127页
- 2018年四川省宜宾市中考数学试卷含2021-11-1120页
- 2018年浙江省金华市中考数学试卷含2021-11-1126页
- 江苏省盐城市中考数学试卷含答案解2021-11-1120页
- 甘肃省定西市中考数学试卷含答案解2021-11-1123页