- 334.28 KB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018年四川省宜宾市中考数学试卷
一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效)
1.(3分)3的相反数是( )
A. B.3 C.﹣3 D.±
2.(3分)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为( )
A.6.5×10﹣4 B.6.5×104 C.﹣6.5×104 D.65×104
3.(3分)一个立体图形的三视图如图所示,则该立体图形是( )
A.圆柱 B.圆锥 C.长方体 D.球
4.(3分)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为( )
A.﹣2 B.1 C.2 D.0
5.(3分)在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定
6.(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( )
A.2% B.4.4% C.20% D.44%
7.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于( )
20
A.2 B.3 C. D.
8.(3分)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为( )
A. B. C.34 D.10
二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效)
9.(3分)分解因式:2a3b﹣4a2b2+2ab3= .
10.(3分)不等式组1<x﹣2≤2的所有整数解的和为 .
11.(3分)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师师笔试、面试成绩如右表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为分 .
教师
成绩
甲
乙
丙
笔试
80分
82分
78分
面试
76分
74分
78分
12.(3分)已知点A是直线y=x+1上一点,其横坐标为﹣
20
,若点B与点A关于y轴对称,则点B的坐标为 .
13.(3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S= .(结果保留根号)
14.(3分)已知:点P(m,n)在直线y=﹣x+2上,也在双曲线y=﹣上,则m2+n2的值为
15.(3分)如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G,若=,则= .
16.(3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,下列结论正确的是 (写出所有正确结论的序号)
①当E为线段AB中点时,AF∥CE;
②当E为线段AB中点时,AF=;
③当A、F、C三点共线时,AE=;
④当A、F、C三点共线时,△CEF≌△AEF.
三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.
17.(10分)(1)计算:sin30°+(2018﹣)0﹣2﹣1+|﹣4|;
20
(2)化简:(1﹣)÷.
18.(6分)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.
19.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.
请根据以上信息,完成下列问题:
(1)该班共有学生人;
(2)请将条形统计图补充完整;
(3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.
20.(8分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.
20
21.(8分)某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号)
22.(10分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).
(1)求反比例函数与一次函数的表达式;
(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.
23.(10分)如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.
(1)求证:直线EC为圆O的切线;
(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.
20
24.(12分)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.
(1)求抛物线的解析式;
(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.
(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.
20
2018年四川省宜宾市中考数学试卷
参考答案与试题解析
一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对成题目上.(注意:在试题卷上作答无效)
1.
【解答】解:3的相反数是﹣3,
故选:C.
2.
【解答】解:65000=6.5×104,
故选:B.
3.
【解答】解:A、圆柱的三视图分别是长方形,长方形,圆,正确;
B、圆锥体的三视图分别是等腰三角形,等腰三角形,圆及一点,错误;
C、长方体的三视图都是矩形,错误;
D、球的三视图都是圆形,错误;
故选:A.
4.
【解答】解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,
∴x1x2=0.
故选:D.
5.
20
【解答】解:如图,∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAD+∠ADC=180°,
∵∠EAD=∠BAD,∠ADE=∠ADC,
∴∠EAD+∠ADE=(∠BAD+∠ADC)=90°,
∴∠E=90°,
∴△ADE是直角三角形,
故选:B.
6.
【解答】解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,
根据题意得:2(1+x)2=2.88,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.
故选:C.
7.
【解答】解:如图,
∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,
20
∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,
∵将△ABC沿BC边上的中线AD平移得到△A'B'C',
∴A′E∥AB,
∴△DA′E∽△DAB,
则()2=,即()2=,
解得A′D=2或A′D=﹣(舍),
故选:A.
8.
【解答】解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值.
∵DE=4,四边形DEFG为矩形,
∴GF=DE,MN=EF,
∴MP=FN=DE=2,
∴NP=MN﹣MP=EF﹣MP=1,
∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.
故选:D.
二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横线上(注意:在试题卷上作答无效)
9.
【解答】解:2a3b﹣4a2b2+2ab3,
=2ab(a2﹣2ab+b2),
20
=2ab(a﹣b)2.
10.
【解答】解:由题意可得,
解不等式①,得:x>6,
解不等式②,得:x≤8,
则不等式组的解集为6<x≤8,
所以不等式组的所有整数解的和为7+8=15,
故答案为:15.
11.
【解答】解:∵甲的综合成绩为80×60%+76×40%=78.4(分),
乙的综合成绩为82×60%+74×40%=78.8(分),
丙的综合成绩为78×60%+78×40%=78(分),
∴被录取的教师为乙,其综合成绩为78.8分,
故答案为:78.8分.
12.
【解答】解:由题意A(﹣,),
∵A、B关于y轴对称,
∴B(,),
故答案为(,).
13.
【解答】解:依照题意画出图象,如图所示.
∵六边形ABCDEF为正六边形,
20
∴△ABO为等边三角形,
∵⊙O的半径为1,
∴OM=1,
∴BM=AM=,
∴AB=,
∴S=6S△ABO=6×××1=2.
故答案为:2.
14.
【解答】解:∵点P(m,n)在直线y=﹣x+2上,
∴n+m=2,
∵点P(m,n)在双曲线y=﹣上,
∴mn=﹣1,
∴m2+n2=(n+m)2﹣2mn=4+2=6.
故答案为:6.
15.
【解答】解:连接AD,BC.
∵AB是半圆的直径,
∴∠ADB=90°,又DE⊥AB,
∴∠ADE=∠ABD,
∵D是 的中点,
20
∴∠DAC=∠ABD,
∴∠ADE=∠DAC,
∴FA=FD;
∵∠ADE=∠DBC,∠ADE+∠EDB=90°,∠DBC+∠CGB=90°,
∴∠EDB=∠CGB,又∠DGF=∠CGB,
∴∠EDB=∠DGF,
∴FA=FG,
∵=,设EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k,
在Rt△ADE中,AD==4k,
∵AB是直径,
∴∠ADG=∠GCB=90°,
∵∠AGD=∠CGB,
∴cos∠CGB=cos∠AGD,
∴=,
在Rt△ADG中,DG==2k,
∴==,
故答案为:.
16.
【解答】解:如图1中,当AE=EB时,
20
∵AE=EB=EF,
∴∠EAF=∠EFA,
∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,
∴∠BEC=∠EAF,
∴AF∥EC,故①正确,
作EM⊥AF,则AM=FM,
在Rt△ECB中,EC==,
∵∠AME=∠B=90°,∠EAM=∠CEB,
∴△CEB∽△EAM,
∴=,
∴=,
∴AM=,
∴AF=2AM=,故②正确,
如图2中,当A、F、C共线时,设AE=x.
则EB=EF=3﹣x,AF=﹣2,
在Rt△AEF中,∵AE2=AF2+EF2,
20
∴x2=(﹣2)2+(3﹣x)2,
∴x=,
∴AE=,故③正确,
如果,△CEF≌△AEF,则∠EAF=∠ECF=∠ECB=30°,显然不符合题意,故④错误,
故答案为①②③.
三、解答题:(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤.
17.
【解答】解:(1)原式=+1﹣+4
=5;
(2)原式=•
=x+1.
18.
【解答】证明:如图,∵∠1=∠2,
∴∠ACB=∠ACD.
在△ABC与△ADC中,
,
∴△ABC≌△ADC(AAS),
∴CB=CD.
20
19.
【解答】解:(1)该班学生总数为10÷20%=50人;
(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,
补全图形如下:
(3)列表如下:
化学
生物
政治
历史
地理
化学
生物、化学
政治、化学
历史、化学
地理、化学
生物
化学、生物
政治、生物
历史、生物
地理、生物
政治
化学、政治
生物、政治
历史、政治
地理、政治
历史
化学、历史
生物、历史
政治、历史
地理、历史
地理
化学、地理
生物、地理
政治、地理
历史、地理
由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,
所以该同学恰好选中化学、历史两科的概率为=.
20.
【解答】解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,
20
根据题意得:﹣=5,
解得:x=20,
经检验,x=20是原方程的解,且符合题意,
∴(1+50%)x=30.
答:每月实际生产智能手机30万部.
21.
【解答】解:作CH⊥AB于H,
则四边形HBDC为矩形,
∴BD=CH,
由题意得,∠ACH=30°,∠CED=30°,
设CD=x米,则AH=(30﹣x)米,
在Rt△AHC中,HC==(30﹣x),
则BD=CH=(30﹣x),
∴ED=(30﹣x)﹣10,
在Rt△CDE中,=tan∠CED,即=,
解得,x=15﹣,
答:立柱CD的高为(15﹣)米.
22.
20
【解答】解:(1)反比例函数y=( m≠0)的图象经过点(1,4),
∴,解得m=4,故反比例函数的表达式为,
一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),
∴,解得,
∴一次函数的表达式y=﹣x﹣5;
(2)由,解得或,
∴点P(﹣1,﹣4),
在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),
S△OPQ=S△OPA﹣S△OAQ==7.5.
23.
【解答】解:(1)证明:∵CE⊥AD于点E
∴∠DEC=90°,
∵BC=CD,
∴C是BD的中点,又∵O是AB的中点,
∴OC是△BDA的中位线,
∴OC∥AD
∴∠OCE=∠CED=90°
∴OC⊥CE,又∵点C在圆上,
∴CE是圆O的切线.
(2)连接AC
∵AB是直径,点F在圆上
∴∠AFB=∠PFE=90°=∠CEA
∵∠EPF=∠EPA
∴△PEF∽△PEA
20
∴PE2=PF×PA
∵∠FBC=∠PCF=∠CAF
又∵∠CPF=∠CPA
∴△PCF∽△PAC
∴PC2=PF×PA
∴PE=PC
在直角△PEF中,sin∠PEF==.
24.
【解答】解:(1)∵抛物线的顶点坐标为(2,0),
设抛物线的解析式为y=a(x﹣2)2.
∵该抛物线经过点(4,1),
∴1=4a,解得:a=,
∴抛物线的解析式为y=(x﹣2)2=x2﹣x+1.
(2)联立直线AB与抛物线解析式成方程组,得:
,解得:,,
∴点A的坐标为(1,),点B的坐标为(4,1).
作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示).
∵点B(4,1),直线l为y=﹣1,
∴点B′的坐标为(4,﹣3).
20
设直线AB′的解析式为y=kx+b(k≠0),
将A(1,)、B′(4,﹣3)代入y=kx+b,得:
,解得:,
∴直线AB′的解析式为y=﹣x+,
当y=﹣1时,有﹣x+=﹣1,
解得:x=,
∴点P的坐标为(,﹣1).
(3)∵点M到直线l的距离与点M到点F的距离总是相等,
∴(m﹣x0)2+(n﹣y0)2=(n+1)2,
∴m2﹣2x0m+x02﹣2y0n+y02=2n+1.
∵M(m,n)为抛物线上一动点,
∴n=m2﹣m+1,
∴m2﹣2x0m+x02﹣2y0(m2﹣m+1)+y02=2(m2﹣m+1)+1,
整理得:(1﹣﹣y0)m2﹣(2﹣2x0﹣2y0)m+x02+y02﹣2y0﹣3=0.
∵m为任意值,
∴,
∴,
∴定点F的坐标为(2,1).
20
20
相关文档
- 2018年浙江省金华市中考数学试卷含2021-11-1126页
- 江苏省盐城市中考数学试卷含答案解2021-11-1120页
- 甘肃省定西市中考数学试卷含答案解2021-11-1123页
- 2019年湖北省鄂州市中考数学试卷含2021-11-1128页
- 2018年贵州省毕节市中考数学试卷含2021-11-116页
- 2018年四川省内江市中考数学试卷含2021-11-1123页
- 2019年浙江省宁波市中考数学试卷含2021-11-1131页
- 2009年北京中考数学试卷含答案2021-11-1113页
- 2019年江西省中考数学试卷含答案2021-11-1133页
- 2018年江苏省盐城市中考数学试卷含2021-11-1115页