• 644.61 KB
  • 2021-11-11 发布

2018年浙江省金华市中考数学试卷含答案

  • 26页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2018年浙江省金华市中考数学试卷 ‎ 一、选择题(本题有10小题,每小题3分,共30分)‎ ‎1.(3分)在0,1,﹣,﹣1四个数中,最小的数是(  )‎ A.0 B.1 C. D.﹣1‎ ‎2.(3分)计算(﹣a)3÷a结果正确的是(  )‎ A.a2 B.﹣a2 C.﹣a3 D.﹣a4‎ ‎3.(3分)如图,∠B的同位角可以是(  )‎ A.∠1 B.∠2 C.∠3 D.∠4‎ ‎4.(3分)若分式的值为0,则x的值为(  )‎ A.3 B.﹣3 C.3或﹣3 D.0‎ ‎5.(3分)一个几何体的三视图如图所示,该几何体是(  )‎ A.直三棱柱 B.长方体 C.圆锥 D.立方体 ‎6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是(  )‎ 26‎ A. B. C. D.‎ ‎7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是(  )‎ A.(5,30) B.(8,10) C.(9,10) D.(10,10)‎ ‎8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为(  )‎ A. B. C. D.‎ ‎9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是(  )‎ A.55° B.60° C.65° D.70°‎ ‎10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是(  )‎ 26‎ A.每月上网时间不足25 h时,选择A方式最省钱 B.每月上网费用为60元时,B方式可上网的时间比A方式多 C.每月上网时间为35h时,选择B方式最省钱 D.每月上网时间超过70h时,选择C方式最省钱 二、填空题(本题有6小题,每小题4分,共24分)‎ ‎11.(4分)化简(x﹣1)(x+1)的结果是   .‎ ‎12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是   .‎ ‎13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是   .‎ ‎14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是   .‎ 26‎ ‎15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是   .‎ ‎16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.‎ ‎(1)图2中,弓臂两端B1,C1的距离为   cm.‎ ‎(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为   cm.‎ 三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)‎ ‎17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.‎ ‎18.(6分)解不等式组:‎ ‎19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:‎ 26‎ ‎(1)求参与问卷调查的总人数.‎ ‎(2)补全条形统计图.‎ ‎(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.‎ ‎20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.‎ ‎21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.‎ ‎(1)求证:AD是⊙O的切线.‎ ‎(2)若BC=8,tanB=,求⊙O的半径.‎ ‎22.(10分)如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.‎ 26‎ ‎(1)求抛物线的函数表达式.‎ ‎(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?‎ ‎(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.‎ ‎23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.‎ ‎(1)当m=4,n=20时.‎ ‎①若点P的纵坐标为2,求直线AB的函数表达式.‎ ‎②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.‎ ‎(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.‎ ‎24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.‎ ‎(1)如图,点D在线段CB上,四边形ACDE是正方形.‎ ‎①若点G为DE中点,求FG的长.‎ 26‎ ‎②若DG=GF,求BC的长.‎ ‎(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.‎ ‎ ‎ 26‎ ‎2018年浙江省金华市中考数学试卷 一、选择题(本题有10小题,每小题3分,共30分)‎ ‎1.(3分)在0,1,﹣,﹣1四个数中,最小的数是(  )‎ A.0 B.1 C. D.﹣1‎ ‎【解答】解:∵﹣1<﹣<0<1,‎ ‎∴最小的数是﹣1,故选:D.‎ ‎2.(3分)计算(﹣a)3÷a结果正确的是(  )‎ A.a2 B.﹣a2 C.﹣a3 D.﹣a4‎ ‎【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.‎ ‎3.(3分)如图,∠B的同位角可以是(  )‎ A.∠1 B.∠2 C.∠3 D.∠4‎ ‎【解答】解:∠B的同位角可以是:∠4.故选:D.‎ ‎4.(3分)若分式的值为0,则x的值为(  )‎ A.3 B.﹣3 C.3或﹣3 D.0‎ ‎【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,‎ 解得x=3.故选:A.‎ ‎5.(3分)一个几何体的三视图如图所示,该几何体是(  )‎ 26‎ A.直三棱柱 B.长方体 C.圆锥 D.立方体 ‎【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.‎ ‎6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是(  )‎ A. B. C. D.‎ ‎【解答】解:∵黄扇形区域的圆心角为90°,‎ 所以黄区域所占的面积比例为=,‎ 即转动圆盘一次,指针停在黄区域的概率是,故选:B.‎ ‎7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是(  )‎ A.(5,30) B.(8,10) C.(9,10) D.(10,10)‎ ‎【解答】解:如图,‎ 过点C作CD⊥y轴于D,‎ 26‎ ‎∴BD=5,CD=50÷2﹣16=9,‎ AB=OD﹣OA=40﹣30=10,‎ ‎∴P(9,10);故选:C.‎ ‎8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为(  )‎ A. B. C. D.‎ ‎【解答】解:在Rt△ABC中,AB=,‎ 在Rt△ACD中,AD=,‎ ‎∴AB:AD=:=,故选:B.‎ ‎9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是(  )‎ A.55° B.60° C.65° D.70°‎ ‎【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.‎ ‎∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,‎ ‎∴∠ACD=90°﹣20°=70°,‎ ‎∵点A,D,E在同一条直线上,‎ ‎∴∠ADC+∠EDC=180°,‎ ‎∵∠EDC+∠E+∠DCE=180°,‎ 26‎ ‎∴∠ADC=∠E+20°,‎ ‎∵∠ACE=90°,AC=CE ‎∴∠DAC+∠E=90°,∠E=∠DAC=45°‎ 在△ADC中,∠ADC+∠DAC+∠DCA=180°,‎ 即45°+70°+∠ADC=180°,‎ 解得:∠ADC=65°,故选:C.‎ ‎10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是(  )‎ A.每月上网时间不足25 h时,选择A方式最省钱 B.每月上网费用为60元时,B方式可上网的时间比A方式多 C.每月上网时间为35h时,选择B方式最省钱 D.每月上网时间超过70h时,选择C方式最省钱 ‎【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;‎ B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;‎ C、设当x≥25时,yA=kx+b,‎ 将(25,30)、(55,120)代入yA=kx+b,得:‎ ‎,解得:,‎ ‎∴yA=3x﹣45(x≥25),‎ 当x=35时,yA=3x﹣45=60>50,‎ ‎∴每月上网时间为35h时,选择B方式最省钱,结论C正确;‎ 26‎ D、设当x≥50时,yB=mx+n,‎ 将(50,50)、(55,65)代入yB=mx+n,得:‎ ‎,解得:,‎ ‎∴yB=3x﹣100(x≥50),‎ 当x=70时,yB=3x﹣100=110<120,‎ ‎∴结论D错误.故选:D.‎ 二、填空题(本题有6小题,每小题4分,共24分)‎ ‎11.(4分)化简(x﹣1)(x+1)的结果是 x2﹣1 .‎ ‎【解答】解:原式=x2﹣1,故答案为:x2﹣1‎ ‎12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是 AC=BC .‎ ‎【解答】解:添加AC=BC,‎ ‎∵△ABC的两条高AD,BE,‎ ‎∴∠ADC=∠BEC=90°,‎ ‎∴∠DAC+∠C=90°,∠EBC+∠C=90°,‎ ‎∴∠EBC=∠DAC,‎ 在△ADC和△BEC中,‎ ‎∴△ADC≌△BEC(AAS),故答案为:AC=BC.‎ ‎13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9% .‎ 26‎ ‎【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,‎ 则这5年增长速度的众数是6.9%,故答案为:6.9%.‎ ‎14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是 ﹣1 .‎ ‎【解答】解:∵1*(﹣1)=2,‎ ‎∴=2‎ 即a﹣b=2‎ ‎∴原式==(a﹣b)=﹣1故答案为:﹣1‎ ‎15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是  .‎ ‎【解答】解:设七巧板的边长为x,则 AB=x+x,‎ BC=x+x+x=2x,‎ ‎==.故答案为:.‎ 26‎ ‎16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.‎ ‎(1)图2中,弓臂两端B1,C1的距离为 30 cm.‎ ‎(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为 10﹣10 cm.‎ ‎【解答】解:(1)如图2中,连接B1C1交DD1于H.‎ ‎∵D1A=D1B1=30‎ ‎∴D1是的圆心,‎ ‎∵AD1⊥B1C1,‎ ‎∴B1H=C1H=30×sin60°=15,‎ ‎∴B1C1=30‎ ‎∴弓臂两端B1,C1的距离为30‎ ‎(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.‎ 设半圆的半径为r,则πr=,‎ ‎∴r=20,‎ ‎∴AG=GB2=20,GD1=30﹣20=10,‎ 在Rt△GB2D2中,GD2==10‎ ‎∴D1D2=10﹣10.‎ 故答案为30,10﹣10,‎ 26‎ 三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)‎ ‎17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.‎ ‎【解答】解:原式=2+1﹣4×+2‎ ‎=2+1﹣2+2‎ ‎=3.‎ ‎ ‎ ‎18.(6分)解不等式组:‎ ‎【解答】解:解不等式+2<x,得:x>3,‎ 解不等式2x+2≥3(x﹣1),得:x≤5,‎ ‎∴不等式组的解集为3<x≤5.‎ ‎ ‎ ‎19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:‎ ‎(1)求参与问卷调查的总人数.‎ 26‎ ‎(2)补全条形统计图.‎ ‎(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.‎ ‎【解答】解:(1)(120+80)÷40%=500(人).‎ 答:参与问卷调查的总人数为500人.‎ ‎(2)500×15%﹣15=60(人).‎ 补全条形统计图,如图所示.‎ ‎(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).‎ 答:这些人中最喜欢微信支付方式的人数约为2800人.‎ ‎ ‎ ‎20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.‎ ‎【解答】解:符合条件的图形如图所示;‎ 26‎ ‎ ‎ ‎21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.‎ ‎(1)求证:AD是⊙O的切线.‎ ‎(2)若BC=8,tanB=,求⊙O的半径.‎ ‎【解答】(1)证明:连接OD,‎ ‎∵OB=OD,‎ ‎∴∠3=∠B,‎ ‎∵∠B=∠1,‎ ‎∴∠1=∠3,‎ 在Rt△ACD中,∠1+∠2=90°,‎ ‎∴∠4=180°﹣(∠2+∠3)=90°,‎ ‎∴OD⊥AD,‎ 则AD为圆O的切线;‎ ‎(2)设圆O的半径为r,‎ 在Rt△ABC中,AC=BCtanB=4,‎ 根据勾股定理得:AB==4,‎ ‎∴OA=4﹣r,‎ 26‎ 在Rt△ACD中,tan∠1=tanB=,‎ ‎∴CD=ACtan∠1=2,‎ 根据勾股定理得:AD2=AC2+CD2=16+4=20,‎ 在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,‎ 解得:r=.‎ ‎ ‎ ‎22.(10分)如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.‎ ‎(1)求抛物线的函数表达式.‎ ‎(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?‎ ‎(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.‎ ‎【解答】解:(1)设抛物线解析式为y=ax(x﹣10),‎ ‎∵当t=2时,AD=4,‎ ‎∴点D的坐标为(2,4),‎ ‎∴将点D坐标代入解析式得﹣16a=4,‎ 26‎ 解得:a=﹣,‎ 抛物线的函数表达式为y=﹣x2+x;‎ ‎(2)由抛物线的对称性得BE=OA=t,‎ ‎∴AB=10﹣2t,‎ 当x=t时,AD=﹣t2+t,‎ ‎∴矩形ABCD的周长=2(AB+AD)‎ ‎=2[(10﹣2t)+(﹣t2+t)]‎ ‎=﹣t2+t+20‎ ‎=﹣(t﹣1)2+,‎ ‎∵﹣<0,‎ ‎∴当t=1时,矩形ABCD的周长有最大值,最大值为;‎ ‎(3)如图,‎ 当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),‎ ‎∴矩形ABCD对角线的交点P的坐标为(5,2),‎ 当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;‎ 当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;‎ ‎∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,‎ 26‎ 当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,‎ ‎∵AB∥CD,‎ ‎∴线段OD平移后得到的线段GH,‎ ‎∴线段OD的中点Q平移后的对应点是P,‎ 在△OBD中,PQ是中位线,‎ ‎∴PQ=OB=4,‎ 所以抛物线向右平移的距离是4个单位.‎ ‎ ‎ ‎23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.‎ ‎(1)当m=4,n=20时.‎ ‎①若点P的纵坐标为2,求直线AB的函数表达式.‎ ‎②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.‎ ‎(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.‎ ‎【解答】解:(1)①如图1,∵m=4,‎ ‎∴反比例函数为y=,‎ 当x=4时,y=1,‎ ‎∴B(4,1),‎ 当y=2时,‎ 26‎ ‎∴2=,‎ ‎∴x=2,‎ ‎∴A(2,2),‎ 设直线AB的解析式为y=kx+b,‎ ‎∴,‎ ‎∴,‎ ‎∴直线AB的解析式为y=﹣x+3;‎ ‎②四边形ABCD是菱形,‎ 理由如下:如图2,由①知,B(4,1),‎ ‎∵BD∥y轴,‎ ‎∴D(4,5),‎ ‎∵点P是线段BD的中点,‎ ‎∴P(4,3),‎ 当y=3时,由y=得,x=,‎ 由y=得,x=,‎ ‎∴PA=4﹣=,PC=﹣4=,‎ ‎∴PA=PC,‎ ‎∵PB=PD,‎ ‎∴四边形ABCD为平行四边形,‎ ‎∵BD⊥AC,‎ ‎∴四边形ABCD是菱形;‎ ‎(2)四边形ABCD能是正方形,‎ 理由:当四边形ABCD是正方形,‎ ‎∴PA=PB=PC=PD,(设为t,t≠0),‎ 26‎ 当x=4时,y==,‎ ‎∴B(4,),‎ ‎∴A(4﹣t,+t),‎ ‎∴(4﹣t)(+t)=m,‎ ‎∴t=4﹣,‎ ‎∴点D的纵坐标为+2t=+2(4﹣)=8﹣,‎ ‎∴D(4,8﹣),‎ ‎∴4(8﹣)=n,‎ ‎∴m+n=32.‎ ‎ ‎ ‎24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.‎ ‎(1)如图,点D在线段CB上,四边形ACDE是正方形.‎ 26‎ ‎①若点G为DE中点,求FG的长.‎ ‎②若DG=GF,求BC的长.‎ ‎(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.‎ ‎【解答】解:(1)①在正方形ACDE中,DG=GE=6,‎ 中Rt△AEG中,AG==6,‎ ‎∵EG∥AC,‎ ‎∴△ACF∽△GEF,‎ ‎∴=,‎ ‎∴==,‎ ‎∴FG=AG=2.‎ ‎②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,‎ ‎∵EF=EF,‎ ‎∴△AEF≌△DEF,‎ ‎∴∠1=∠2,设∠1=∠2=x,‎ ‎∵AE∥BC,‎ ‎∴∠B=∠1=x,‎ ‎∵GF=GD,‎ ‎∴∠3=∠2=x,‎ 在△DBF中,∠3+∠FDB+∠B=180°,‎ ‎∴x+(x+90°)+x=180°,‎ 解得x=30°,‎ ‎∴∠B=30°,‎ 26‎ ‎∴在Rt△ABC中,BC==12.‎ ‎(2)在Rt△ABC中,AB===15,‎ 如图2中,当点D中线段BC上时,此时只有GF=GD,‎ ‎∵DG∥AC,‎ ‎∴△BDG∽△BCA,‎ 设BD=3x,则DG=4x,BG=5x,‎ ‎∴GF=GD=4x,则AF=15﹣9x,‎ ‎∵AE∥CB,‎ ‎∴△AEF∽△BCF,‎ ‎∴=,‎ ‎∴=,‎ 整理得:x2﹣6x+5=0,‎ 解得x=1或5(舍弃)‎ ‎∴腰长GD为=4x=4.‎ 如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,‎ ‎∴FG=DG=12+4x,‎ ‎∵AE∥BC,‎ ‎∴△AEF∽△BCF,‎ ‎∴=,‎ ‎∴=,‎ 解得x=2或﹣2(舍弃),‎ ‎∴腰长DG=4x+12=20.‎ 如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.‎ 设AE=3x,则EG=4x,AG=5x,DG=4x+12,‎ 26‎ ‎∴FH=GH=DG•cos∠DGB=(4x+12)×=,‎ ‎∴GF=2GH=,‎ ‎∴AF=GF﹣AG=,‎ ‎∵AC∥DG,‎ ‎∴△ACF∽△GEF,‎ ‎∴=,‎ ‎∴=,‎ 解得x=或﹣(舍弃),‎ ‎∴腰长GD=4x+12=,‎ 如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.‎ 设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,‎ ‎∴FH=GH=DG•cos∠DGB=,‎ ‎∴FG=2FH=,‎ ‎∴AF=AG﹣FG=,‎ ‎∵AC∥EG,‎ ‎∴△ACF∽△GEF,‎ ‎∴=,‎ ‎∴=,‎ 解得x=或﹣(舍弃),‎ ‎∴腰长DG=4x﹣12=,‎ 26‎ 综上所述,等腰三角形△DFG的腰长为4或20或或.‎ ‎ ‎ 26‎