- 150.50 KB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
小专题14 教材P124复习题T13的变式与应用
【教材母题】 如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D.求证:DE=DB.
证明:连接BE,由点E是△ABC的内心可知∠BAD=∠CAD.
∵∠CAD=∠CBD,
∴∠BAD=∠CBD.
又∵∠ABE=∠CBE,
∴∠BAD+∠ABE=∠CBE+∠CBD.
∴∠BED=∠EBD.
∴DE=DB.
【问题延伸1】 写出∠BED与∠C的关系:∠BED=90°-∠C.
【问题延伸2】 设AD交BC于点F,AD为△ABC外接圆的直径,G为AB上一点,且∠ADG=∠C.若BG=3,AG=5,求DE的长.
10
解:易证AD垂直平分BC,
∵∠ADG=∠C=∠ADB,
∴DG平分∠ADB.
由(1)知BD=DE,∴DG垂直平分BE.连接GE,∴BG=GE,∠DEG=∠DBG=90°.
∵BG=3,AG=5,∴GE=3.∴AE=4.
设BD=DE=x,则x2+82=(x+4)2,解得x=6.
∴DE=6.
1.(临沂中考)如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E.
(1)求证:DE=DB;
(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.
解:(1)解答同教材母题解答.
(2)连接DC,∵∠BAC=90°,
∴BC是直径.∴∠BDC=90°.
∵∠BAD=∠CAD,BD=4,
∴BD=CD=4.
∴BC==4.
∴外接圆的半径为2.
2.如图,⊙O为△ABC的外接圆,BC为直径,AD平分∠BAC交⊙O于点D,点M为△
10
ABC的内心.
(1)求证:BC=DM;
(2)若DM=5,AB=8,求OM的长.
解:(1)证明:连接MC,DB,DC.
∵点M为△ABC的内心,
∴MC平分∠ACB.
∴∠ACM=∠BCM.
∵BC为直径,
∴∠BAC=90°.
∵AD平分∠BAC,
∴∠BAD=∠CAD=∠BAC=45°.
∴∠DBC=∠BCD=45°.
∴△BDC为等腰直角三角形.
∴BC=DC.
又∵∠DMC=∠MAC+∠ACM=45°+∠ACM,
而∠DCM=∠BCD+∠BCM=45°+∠BCM,
∴∠DMC=∠DCM.
∴DC=DM.
∴BC=DM.
(2)作MF⊥BC于点F,ME⊥AC于点E,MH⊥AB于点H,连接OM.
∵DM=5,
∴BC=DM=10.
而AB=8,
∴AC==6.
设△ABC的内切圆半径为r,
∵点M为△ABC的内心,
10
∴MH=ME=MF=r.
∴四边形AHME为正方形.
∴AH=AE=r,则CE=CF=6-r,
BH=BF=8-r.
而BF+FC=BC,
∴8-r+6-r=10,计算得出r=2.
∴MF=2,CF=6-2=4,
∵OC=5,
∴OF=5-4=1.
在Rt△OMF中,OM==.
小专题15 与圆的切线有关的计算与证明
1.(怀化中考)如图,在Rt△ABC中,∠BAC=90°.
(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)
(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.
解:(1)如图所示,⊙P为所求的圆.
(2)BC与⊙P相切,
理由:过P作PD⊥BC,垂足为D,
∵CP为∠ACB的平分线,且PA⊥AC,PD⊥CB,
∴PD=PA.
∵PA为⊙P的半径,
∴BC与⊙P相切.
2.(永州中考)如图,已知AB是⊙O的直径,过O点作OP⊥AB,交弦AC于点D,交⊙
10
O于点E,且使∠PCA=∠ABC.
(1)求证:PC是⊙O的切线;
(2)若∠P=60°,PC=2,求PE的长.
解:(1)证明:连接OC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠BCO+∠ACO=90°.
∵OC=OB,
∴∠B=∠BCO.
∵∠PCA=∠ABC,
∴∠BCO=∠ACP.
∴∠ACP+∠OCA=90°.
∴∠OCP=90°,即OC⊥PC.
∵OC为⊙O的半径,
∴PC是⊙O的切线.
(2)∵∠P=60°,PC=2,∠PCO=90°,
∴OC=2,OP=2PC=4.
∴PE=OP-OE=OP-OC=4-2.
3.(黄石中考)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于点D,连接BD并延长至点F,使得BD=DF,连接CF,BE.求证:
(1)DB=DE;
(2)直线CF为⊙O的切线.
10
证明:(1)∵E为△ABC的内心,
∴∠DAC=∠DAB,∠CBE=∠EBA.
又∵∠DBC=∠DAC,∠DBE=∠DBC+∠CBE,∠DEB=∠EAB+∠EBA,
∴∠DBE=∠DEB.∴DB=DE.
(2)连接OD.
∵BD=DF,O是BC的中点,
∴OD∥CF.
又∵BC为⊙O的直径,OB=OD,
∴∠ODB=∠DBO=∠DAC=45°.
∴∠BCF=∠BOD=90°.
∴OC⊥CF.
又OC为⊙O的半径,∴直线CF为⊙O的切线.
4.(北京中考)如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交于点D,过点D作⊙O的切线,交BA的延长线于点E.
(1)求证:AC∥DE;
(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.
解:(1)证明:∵ED与⊙O相切于点D,
∴OD⊥DE.
∵F为弦AC的中点,
∴OD⊥AC.∴AC∥DE.
(2)①连接AD,易知AD=AO,
10
又∵OA=OD,∴△AOD是等边三角形,且边长为a.
∴可以进一步求出△AOD的面积为a2;
②根据点A是EO中点,可知△EOD的面积是△AOD面积的2倍,∴可得△EOD的面积为a2;
③等量代换可得四边形ACDE的面积为a2.
5.如图所示,MN是⊙O的切线,B为切点,BC是⊙O的弦且∠CBN=45°,过C的直线与⊙O,MN分别交于A,D两点,过C作CE⊥BD于点E.
(1)求证:CE是⊙O的切线;
(2)若∠D=30°,BD=2+2,求⊙O的半径r.
解:(1)证明:连接OB,OC.
∵MN是⊙O的切线,
∴OB⊥MN.
∵∠CBN=45°,
∴∠OBC=45°,∠BCE=45°.
∵OB=OC,∴∠OBC=∠OCB=45°.
∴∠OCE=90°.
又∵点C在⊙O上,
∴CE是⊙O的切线.
(2)∵OB⊥BE,CE⊥BE,OC⊥CE,
∴四边形BOCE是矩形.
又∵OB=OC,∴四边形BOCE是正方形.
∴BE=CE=OB=OC=r.
在Rt△CDE中,∵∠D=30°,CE=r,∴DE=r.
∵BD=2+2,∴r+r=2+2.解得r=2.
即⊙O的半径为2.
10
6.已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.
(1)如图1,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;
(2)如图2,当直线l与⊙O相交于点E,F时,若∠DAE=18°,求∠BAF的大小.
解:(1)连接OC.
∵直线l与⊙O相切于点C,
∴OC⊥l.
又∵AD⊥l,
∴AD∥OC.
∴∠ACO=∠DAC=30°.
∵OA=OC,
∴∠BAC=∠ACO.
∴∠BAC=∠DAC=30°.
(2)连接BF.
∵∠AEF为Rt△ADE的一个外角,∠DAE=18°,∴∠AEF=∠ADE+∠DAE=90°+18°=108°.
∵四边形ABFE是圆内接四边形,
∴∠AEF+∠B=180°.
∴∠B=180°-108°=72°.
∵AB是⊙O的直径,∴∠AFB=90°.
∴∠BAF=90°-∠B=18°.
7.(教材P102习题T12变式)如图,AB是⊙O的直径,C为⊙O上一点,AD与过C点的切线互相垂直,垂足为D,AD交⊙O于点E,DE=2,CD=4.
(1)求证:AC平分∠BAD;
(2)求⊙O的半径R;
(3)延长AB,DC交于点F,OH⊥AC于点H.若∠F=2∠ABH,则BH的长为2
10
(直接写出).
解:(1)证明:连接OC,
∵FD切⊙O于点C.
∴OC⊥FD.
∵AD⊥FD.∴OC∥AD.
∴∠ACO=∠DAC.
∵OC=OA,
∴∠ACO=∠CAO.
∴∠DAC=∠CAO,
即AC平分∠DAB.
(2)作OG⊥AE于点G,则AG=EG.
∴OG=CD=4,OC=DG=R.
∴EG=R-2=AG.
在Rt△AGO中,(R-2)2+42=R2,
∴R=5.
(3)提示:连接BE,∵∠AEB=90°.
∴BE∥DF.
∴∠F=∠ABE=2∠ABH.
∴BH平分∠ABE.
又∵AC平分∠BAD.
∴∠AHB=135°.
∴△CHB是等腰三角形.
∴BC=CH=AH.
设BC=x,AC=2x,
在Rt△ABC中,x2+(2x)2=102,
∴x=2,
10
∴BH=CH=2.
10
相关文档
- 2009年宁德市初中毕业、升学考试数2021-11-114页
- 2018届初中地理总复习课件:第17讲 2021-11-1142页
- 2020届初中物理章节复习 第9章 压2021-11-1111页
- 【初中物理精品课件PPT】中考物理2021-11-1144页
- 初中中考物理复习课件:第16讲-电压2021-11-1140页
- 江苏徐州市2018年初中毕业、升学考2021-11-115页
- 人教版初中物理中考复习课件-第五2021-11-1138页
- 2019四川省乐山市初中学业水平考试2021-11-1115页
- 永州市年初中毕业学业考试模拟试卷2021-11-119页
- 初中道德与法2020年中考重点词练习2021-11-1110页