• 533.00 KB
  • 2021-11-11 发布

2014年湖北省宜昌市中考数学试题(含答案)

  • 17页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2014年湖北省宜昌市中考数学试卷 参考答案与试题解析 ‎ ‎ 一、单项选择题(共15小题,每小题3分,满分45分)‎ ‎1.(3分)(2014•宜昌)三峡大坝全长约2309米,这个数据用科学记数法表示为(  )米.‎ ‎ ‎ A.‎ ‎2.309×103‎ B.‎ ‎23.09×102‎ C.‎ ‎0.2309×104‎ D.‎ ‎2.309×10﹣3‎ 考点:‎ 科学记数法—表示较大的数.菁优网版权所有 分析:‎ 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.‎ 解答:‎ 解:2309=2.309×103,‎ 故选:A.‎ 点评:‎ 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.‎ ‎2.(3分)(2014•宜昌)在﹣2,0,3,这四个数中,最大的数是(  )‎ ‎ ‎ A.‎ ‎﹣2‎ B.‎ ‎0‎ C.‎ ‎3‎ D.‎ 考点:‎ 实数大小比较.菁优网版权所有 分析:‎ 根据正数大于0,0大于负数,可得答案.‎ 解答:‎ 解:﹣2<0<<3,‎ 故选:C.‎ 点评:‎ 本题考查了实数比较大小,是解题关键.‎ ‎ ‎ ‎3.(3分)(2014•宜昌)平行四边形的内角和为(  )‎ ‎ ‎ A.‎ ‎180°‎ B.‎ ‎270°‎ C.‎ ‎360°‎ D.‎ ‎640°‎ 考点:‎ 多边形内角与外角.菁优网版权所有 分析:‎ 利用多边形的内角和=(n﹣2)•180°即可解决问题 解答:‎ 解:解:根据多边形的内角和可得:‎ ‎(4﹣2)×180°=360°.‎ 故选:C.‎ 点评:‎ 本题考查了对于多边形内角和定理的识记.n边形的内角和为(n﹣2)•180°.‎ ‎ ‎ ‎4.(3分)(2014•宜昌)作业时间是中小学教育质量综合评价指标的考查要点之一,腾飞学习小组五个同学每天课外作业时间分别是(单位:分钟):60,80,75,45,120.这组数据的中位数是(  )‎ ‎ ‎ A.‎ ‎45‎ B.‎ ‎75‎ C.‎ ‎80‎ D.‎ ‎60‎ 考点:‎ 中位数.菁优网版权所有 分析:‎ 根据中位数的概念求解即可.‎ 解答:‎ 解:将数据从小到大排列为:45,60,75,80,120,‎ 中位数为75.‎ 故选B.‎ 点评:‎ 本题考查了中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.‎ ‎ ‎ ‎5.(3分)(2014•宜昌)如图的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是(  )‎ ‎ ‎ A.‎ B.‎ C.‎ D.‎ 考点:‎ 简单组合体的三视图.菁优网版权所有 分析:‎ 根据俯视图是从上面看得到的图形,可得答案.‎ 解答:‎ 解:从上面看外边是一个矩形,里面是一个圆,‎ 故选:C.‎ 点评:‎ 本题考查了简单组合体的三视图,俯视图是从上面看得到的图形.‎ ‎ ‎ ‎6.(3分)(2014•宜昌)已知三角形两边长分别为3和8,则该三角形第三边的长可能是(  )‎ ‎ ‎ A.‎ ‎5‎ B.‎ ‎10‎ C.‎ ‎11‎ D.‎ ‎12‎ 考点:‎ 三角形三边关系.菁优网版权所有 分析:‎ 根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.‎ 解答:‎ 解:根据三角形的三边关系,得 第三边大于:8﹣3=5,而小于:3+8=11.‎ 则此三角形的第三边可能是:10.‎ 故选:B.‎ 点评:‎ 本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.‎ ‎7.(3分)(2014•宜昌)下列计算正确的是(  )‎ ‎ ‎ A.‎ a+2a2=3a3‎ B.‎ a3•a2=a6‎ C.‎ a6+a2=a3‎ D.‎ ‎(ab)3=a3b3‎ 考点:‎ 幂的乘方与积的乘方;合并同类项;同底数幂的乘法.菁优网版权所有 分析:‎ 根据合并同类项法则,同底数幂的乘法,积的乘方分别求出每个式子的结果,再判断即可.‎ 解答:‎ 解:A、a和2a2不能合并,故本选项错误;‎ B、a3•a2=a5,故本选项错误;‎ C、a6和a2不能合并,故本选项错误;‎ D、(ab)3=a3b3,故本选项正确;‎ 故选D.[来源:Zxxk.Com]‎ 点评:‎ 本题考查了合并同类项法则,同底数幂的乘法,积的乘方的应用,主要考查学生的计算能力.‎ ‎ ‎ ‎8.(3分)(2014•宜昌)2014年3月,YC市举办了首届中学生汉字听写大会,从甲、乙、丙、丁4套题中随机抽取一套训练,抽中甲的概率是(  )‎ ‎ ‎ A.‎ B.‎ C.‎ D.‎ ‎1‎ 考点:‎ 概率公式.菁优网版权所有 分析:‎ 四套题中抽一套进行训练,利用概率公式直接计算即可.‎ 解答:‎ 解:∵从甲、乙、丙、丁4套题中随机抽取一套训练,‎ ‎∴抽中甲的概率是,‎ 故选C.‎ 点评:‎ 本题考查了概率的公式,能记住概率的求法是解决本题的关键,比较简单.‎ ‎ ‎ ‎9.(3分)(2014•宜昌)如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是(  )[来源:学科网]‎ ‎ ‎ A.‎ AB=24m B.‎ MN∥AB C.‎ ‎△CMN∽△CAB D.‎ CM:MA=1:2‎ 考点:‎ 三角形中位线定理;相似三角形的应用.菁优网版权所有 专题:‎ 应用题.‎ 分析:‎ 根据三角形的中位线平行于第三边并且等于第三边的一半可得MN∥AB,MN=AB,再根据相似三角形的判定解答.‎ 解答:‎ 解:∵M、N分别是AC,BC的中点,‎ ‎∴MN∥AB,MN=AB,‎ ‎∴AB=2MN=2×12=24m,‎ ‎△CMN∽△CAB,‎ ‎∵M是AC的中点,‎ ‎∴CM=MA,‎ ‎∴CM:MA=1:1,‎ 故描述错误的是D选项.‎ 故选D.‎ 点评:‎ 本题考查了三角形的中位线平行于第三边并且等于第三边的一半,相似三角形的判定,熟记定理并准确识图是解题的关键.‎ ‎ ‎ ‎10.(3分)(2014•宜昌)如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=(  )‎ ‎ ‎ A.‎ ‎30‎ B.‎ ‎45‎ C.‎ ‎60‎ D.‎ ‎90‎ 考点:‎ 等腰三角形的性质.菁优网版权所有 分析:‎ 根据等腰三角形两底角相等求出∠ABC=∠ACB,再求出∠CBD,然后根据∠ABD=∠ABC﹣∠CBD计算即可得解.‎ 解答:‎ 解:∵AB=AC,∠A=30°,‎ ‎∴∠ABC=∠ACB=(180°﹣∠A)=(180°﹣30°)=75°,‎ ‎∵以B为圆心,BC的长为半径圆弧,交AC于点D,‎ ‎∴BC=BD,‎ ‎∴∠CBD=180°﹣2∠ACB=180°﹣2×75°=30°,‎ ‎∴∠ABD=∠ABC﹣∠CBD=75°﹣30°=45°.‎ 故选B.‎ 点评:‎ 本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.‎ ‎ ‎ ‎11.(3分)(2014•宜昌)要使分式有意义,则的取值范围是(  )‎ ‎ ‎ A.‎ x≠1‎ B.‎ x>1‎ C.‎ x<1‎ D.‎ x≠﹣1‎ 考点:‎ 分式有意义的条件.菁优网版权所有 分析:‎ 根据分母不等于0列式计算即可得解.‎ 解答:‎ 解:由题意得,x﹣1≠0,‎ 解得x≠1.‎ 故选A.‎ 点评:‎ 本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:‎ ‎(1)分式无意义⇔分母为零;‎ ‎(2)分式有意义⇔分母不为零;‎ ‎(3)分式值为零⇔分子为零且分母不为零.‎ ‎ ‎ ‎12.(3分)(2014•宜昌)如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=(  )‎ ‎ ‎ A.‎ ‎∠ACD B.‎ ‎∠ADB C.‎ ‎∠AED D.‎ ‎∠ACB 考点:‎ 圆周角定理.菁优网版权所有 分析:‎ 根据圆周角定理即可判断A、B、D,根据三角形外角性质即可判断C.‎ 解答:‎ 解:A、∵∠ABD对的弧是弧AD,∠ACD对的弧也是AD,‎ ‎∴∠ABD=∠ACD,故本选项正确;‎ B、∵∠ABD对的弧是弧AD,∠ADB对的弧也是AB,而已知没有说弧AD=弧AB,‎ ‎∴∠ABD和∠ACD不相等,故本选项错误;‎ C、∠AED>∠ABD,故本选项错误;‎ D、∵∠ABD对的弧是弧AD,∠ACB对的弧也是AB,而已知没有说弧AD=弧AB,‎ ‎∴∠ABD和∠ACB不相等,故本选项错误;‎ 故选A.‎ 点评:‎ 本题考查了圆周角定理和三角形外角性质的应用,注意:在同圆或等哦圆中,同弧或等弧所对的圆周角相等.‎ ‎ ‎ ‎13.(3分)(2014•宜昌)如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为(  )‎ ‎ ‎ A.‎ π B.‎ ‎6π C.‎ ‎3π D.‎ ‎1.5π 考点:‎ 旋转的性质;弧长的计算.菁优网版权所有 分析:‎ 根据弧长公式列式计算即可得解.‎ 解答:‎ 解:的长==1.5π.‎ 故选D.‎ 点评:‎ 本题考查了旋转的性质,弧长的计算,熟记弧长公式是解题的关键.‎ ‎ ‎ ‎14.(3分)(2014•宜昌)如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是(  )‎ ‎ ‎ A.‎ m+n<0‎ B.‎ ‎﹣m<﹣n C.‎ ‎|m|﹣|n|>0‎ D.‎ ‎2+m<2+n 考点:‎ 实数与数轴.菁优网版权所有 分析:‎ 根据M、N两点在数轴上的位置判断出其取值范围,再对各选项进行逐一分析即可.‎ 解答:‎ 解:M、N两点在数轴上的位置可知:﹣1<M<0,N>2,‎ ‎∵M+N>O,故A错误,‎ ‎∵﹣M>﹣N,故B错误,‎ ‎∵|m|﹣|n|<,0故C错误.‎ ‎∵2+m<2+n正确,‎ ‎∴D选项正确.‎ 故选:D.‎ 点评:‎ 本题考查的是数轴的特点,根据a、b两点在数轴上的位置判断出其取值范围是解答此题的关键.‎ ‎ ‎ ‎15.(3分)(2014•宜昌)二次函数y=ax2+b(b>0)与反比例函数y=在同一坐标系中的图象可能是(  )‎ ‎ ‎ A.‎ B.‎ C.‎ D.‎ 考点:‎ 二次函数的图象;反比例函数的图象.菁优网版权所有 专题:‎ 数形结合.‎ 分析:‎ 先根据各选项中反比例函数图象的位置确定a的范围,再根据a的范围对抛物线的大致位置进行判断,从而确定该选项是否正确.‎ 解答:‎ 解:A、对于反比例函数y=经过第二、四象限,则a<0,所以抛物线开口向下,所以A选项错误;‎ B、对于反比例函数y=经过第一、三象限,则a>0,所以抛物线开口向上,b>0,抛物线与y轴的交点在x轴上方,所以B选项正确;‎ C、对于反比例函数y=经过第一、三象限,则a>0,所以抛物线开口向上,所以C选项正确;‎ D、对于反比例函数y=经过第一、三象限,则a>0,所以抛物线开口向上,而b>0,抛物线与y轴的交点在x轴上方,所以D选项错误.‎ 故选B.‎ 点评:‎ 本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了反比例函数的图象.‎ ‎ ‎ 二、解答题(共9小题,共75分)‎ ‎16.(6分)(2014•宜昌)计算:+|﹣2|+(﹣6)×(﹣).‎ 考点:‎ 实数的运算.菁优网版权所有 分析:‎ 本题涉及绝对值、二次根式化简、有理数的乘法三个考点.针对每个考点分别进行计算,然后再计算有理数的加法即可.‎ 解答:‎ 解:原式=2+2+4=8.‎ 点评:‎ 本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.‎ ‎ ‎ ‎17.(6分)(2014•宜昌)化简:(a+b)(a﹣b)+2b2.‎ 考点:‎ 平方差公式;合并同类项.菁优网版权所有 分析:‎ 先根据平方差公式算乘法,再合并同类项即可.‎ 解答:‎ 解:原式=a2﹣b2+2b2‎ ‎=a2+b2.‎ 点评:‎ 本题考查了平方差公式和整式的混合运算的应用,主要考查学生的化简能力.‎ ‎ ‎ ‎18.(7分)(2014•宜昌)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.‎ ‎(1)求∠CAD的度数;‎ ‎(2)延长AC至E,使CE=AC,求证:DA=DE.‎ 考点:‎ 全等三角形的判定与性质.菁优网版权所有 分析:‎ ‎(1)利用“直角三角形的两个锐角互余”的性质和角平分的性质进行解答;‎ ‎(2)通过证△ACD≌△ECD来推知DA=DE.‎ 解答:‎ ‎(1)解:如图,∵在Rt△ABC中,∠ACB=90°,∠B=30°,‎ ‎∴∠B=30°,‎ ‎∴∠CAB=60°.‎ 又∵AD平分∠CAB,‎ ‎∴∠CAD=∠CAB=30°,即∠CAD=30°;‎ ‎(2)证明:∵∠ACD+∠ECD=180°,且∠ACD=90°,‎ ‎∴∠ECD=90°,‎ ‎∴∠ACD=∠ECD.‎ 在△ACD与△ECD中,,‎ ‎∴△ACD≌△ECD(SAS),‎ ‎∴DA=DE.‎ 点评:‎ 本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.‎ ‎ ‎ ‎19.(7分)(2014•宜昌)下表中,y是x的一次函数. ‎ ‎ x ‎﹣2‎ ‎ 1‎ ‎ 2‎ ‎ 4 ‎ ‎ 5‎ ‎ y ‎ 6‎ ‎﹣3‎ ‎ ﹣6 ‎ ‎﹣12‎ ‎﹣15‎ ‎(1)求该函数的表达式,并补全表格;‎ ‎(2)已知该函数图象上一点M(1,﹣3)也在反比例函数y=图象上,求这两个函数图象的另一交点N的坐标.‎ 考点:‎ 反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.菁优网版权所有 分析:‎ ‎(1)设y=kx+b,将点(﹣2,6)、(5,﹣15)代入可得函数解析式,也可补全表格;‎ ‎(2)将点M的坐标代入,可得m的值,联立一次函数及反比例函数解析式可得另一交点坐标.‎ 解答:‎ 解:(1)设该一次函数为y=kx+b(k≠0),‎ ‎∵当x=﹣2时,y=6,当x=1时,y=﹣3,‎ ‎∴,‎ 解得:,‎ ‎∴一次函数的表达式为:y=﹣3x,‎ 当x=2时,y=﹣6;当y=﹣12时,x=4.‎ 补全表格如题中所示.‎ ‎(2)∵点M(1,﹣3)在反比例函数y=上(m≠0),‎ ‎∴﹣3=,‎ ‎∴m=﹣3,‎ ‎∴反比例函数解析式为:y=﹣,‎ 联立可得,‎ 解得:或,‎ ‎∴另一交点坐标为(﹣1,3).‎ 点评:‎ 本题考查了反比例函数与一次函数的交点问题,解答本题的关键是熟练待定系数法的运用,难度一般.‎ ‎ ‎ ‎20.(8分)(2014•宜昌)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:‎ ‎(1)填空:样本中的总人数为 80 ;开私家车的人数m= 20 ;扇形统计图中“骑自行车”所在扇形的圆心角为 72 度;‎ ‎(2)补全条形统计图;‎ ‎(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?‎ ‎[来源:学§科§网Z§X§X§K]‎ 考点:‎ 条形统计图;一元一次不等式的应用;扇形统计图.菁优网版权所有 专题:‎ 图表型.‎ 分析:‎ ‎(1)用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360°乘以骑自行车的所占的百分比计算即可得解;‎ ‎(2)求出骑自行车的人数,然后补全统计图即可;‎ ‎(3)设原来开私家车的人中有x人改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可.‎ 解答:‎ 解:(1)样本中的总人数为:36÷45%=80人,‎ 开私家车的人数m=80×25%=20;‎ 扇形统计图中“骑自行车”所占的百分比为:1﹣10%﹣25%﹣45%=20%,‎ 所在扇形的圆心角为360°×20%=72°;‎ 故答案为:80,20,72;‎ ‎(2)骑自行车的人数为:80×20%=16人,‎ 补全统计图如图所示;‎ ‎(3)设原来开私家车的人中有x人改为骑自行车,‎ 由题意得,×2000+x≥×2000﹣x,‎ 解得x≥50,‎ 答:原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.‎ 点评:‎ 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.‎ ‎ ‎ ‎21.(8分)(2014•宜昌)已知:如图,四边形ABCD为平行四边形,以CD为直径作⊙O,⊙O与边BC相交于点F,⊙O的切线DE与边AB相交于点E,且AE=3EB.‎ ‎(1)求证:△ADE∽△CDF;‎ ‎(2)当CF:FB=1:2时,求⊙O与▱ABCD的面积之比.‎ 考点:‎ 切线的性质;勾股定理;平行四边形的性质;相似三角形的判定与性质.菁优网版权所有 分析:‎ ‎(1)根据平行四边形的性质得出∠A=∠C,AD∥BC,求出∠ADE=∠CDF,根据相似三角形的判定推出即可;‎ ‎(2)设CF=x,FB=2x,则BC=3x,设EB=y,则AE=3y,AB=4y,根据相似得出=,求出x=2y,由勾股定理得求出DF=2y,分别求出⊙O的面积和四边形ABCD的面积,即可求出答案.‎ 解答:‎ ‎(1)证明:∵CD是⊙O的直径,‎ ‎∴∠DFC=90°,‎ ‎∵四边形ABCD是平行四边形,‎ ‎∴∠A=∠C,AD∥BC,‎ ‎∴∠ADF=∠DFC=90°,‎ ‎∵DE为⊙O的切线,‎ ‎∴DE⊥DC,‎ ‎∴∠EDC=90°,‎ ‎∴∠ADF=∠EDC=90°,‎ ‎∴∠ADE=∠CDF,‎ ‎∵∠A=∠C,‎ ‎∴△ADE∽△CDE;‎ ‎(2)解:∵CF:FB=1:2,‎ ‎∴设CF=x,FB=2x,则BC=3x,‎ ‎∵AE=3EB,‎ ‎∴设EB=y,则AE=3y,AB=4y,‎ ‎∵四边形ABCD是平行四边形,‎ ‎∴AD=BC=3x,AB=DC=4y,‎ ‎∵△ADE∽△CDF,‎ ‎∴=,‎ ‎∴=,[来源:学科网]‎ ‎∵x、y均为正数,‎ ‎∴x=2y,‎ ‎∴BC=6y,CF=2y,‎ 在Rt△DFC中,∠DFC=90°,‎ 由勾股定理得:DF===2y,‎ ‎∴⊙O的面积为π•(DC)2=π•DC2=π(4y)2=4πy2,‎ 四边形ABCD的面积为BC•DF=6y•2y=12y2,‎ ‎∴⊙O与四边形ABCD的面积之比为4πy2:12y2=π:3.‎ 点评:‎ 本题考查了平行四边形的性质,相似三角形的性质和判定,勾股定理的应用,主要考查学生综合运用性质进行推理和计算的能力.‎ ‎ ‎ ‎22.(10分)(2014•宜昌)在“文化宜昌•全民阅读”活动中,某中学社团“精一读书社”对全校学生的人数及纸质图书阅读量(单位:本)进行了调查,2012年全校有1000名学生,2013年全校学生人数比2012年增加10%,2014年全校学生人数比2013年增加100人.‎ ‎(1)求2014年全校学生人数;‎ ‎(2)2013年全校学生人均阅读量比2012年多1本,阅读总量比2012年增加1700本(注:阅读总量=人均阅读量×人数)‎ ‎①求2012年全校学生人均阅读量;‎ ‎②2012年读书社人均阅读量是全校学生人均阅读量的2.5倍,如果2012年、2014年这两年读书社人均阅读量都比前一年增长一个相同的百分数a,2014年全校学生人均阅读量比2012年增加的百分数也是a,那么2014年读书社全部80名成员的阅读总量将达到全校学生阅读总量的25%,求a的值.‎ 考点:‎ 一元二次方程的应用;一元一次方程的应用.菁优网版权所有 分析:‎ ‎(1)根据题意,先求出2013年全校的学生人数就可以求出2014年的学生人数;‎ ‎(2)①设2012人均阅读量为x本,则2013年的人均阅读量为(x+1)本,根据阅读总量之间的数量关系建立方程就可以得出结论;‎ ‎②由①的结论就可以求出2012年读书社的人均读书量,2014年读书社的人均读书量,全校的人均读书量,由2014年读书社的读书量与全校读书量之间的关系建立方程求出其解即可.‎ 解答:‎ 解:(1)由题意,得 ‎2013年全校学生人数为:1000×(1+10%)=1100人,‎ ‎∴2014年全校学生人数为:1100+100=1200人;‎ ‎(2)①设2012人均阅读量为x本,则2013年的人均阅读量为(x+1)本,由题意,得 ‎1100(x+1)=1000x+1700,‎ 解得:x=6.‎ 答:2012年全校学生人均阅读量为6本;‎ ‎②由题意,得 ‎2012年读书社的人均读书量为:2.5×6=15本,‎ ‎2014年读书社人均读书量为15(1+a)2本,‎ ‎2014年全校学生的读书量为6(1+a)本,‎ ‎80×15(1+a)2=1200×6(1+a)×25%‎ ‎2(1+a)2=3(1+a),‎ ‎∴a1=﹣1(舍去),a2=0.5.‎ 答:a的值为0.5.‎ 点评:‎ 本题考查了列一元一次方程解实际问题的运用,一元二次方程的解法的运用,增长率问题的数量关系的运用,解答时根据阅读总量之间的关系建立方程是关键.‎ ‎ ‎ ‎23.(11分)(2014•宜昌)在矩形ABCD中,=a,点G,H分别在边AB,DC上,且HA=HG,点E为AB边上的一个动点,连接HE,把△AHE沿直线HE翻折得到△FHE.‎ ‎(1)如图1,当DH=DA时,‎ ‎①填空:∠HGA= 45 度;‎ ‎②若EF∥HG,求∠AHE的度数,并求此时的最小值;‎ ‎(2)如图3,∠AEH=60°,EG=2BG,连接FG,交边FG,交边DC于点P,且FG⊥AB,G为垂足,求a的值.‎ 考点:‎ 四边形综合题.菁优网版权所有 分析:‎ ‎(1)①根据矩形的性质和已知条件得出∠HAE=45°,再根据HA=HG,得出∠HAE=∠HGA,从而得出答案;‎ ‎②先分两种情况讨论:第一种情况,根据(1)得出∠AHG=90°,再根据折叠的性质得出∠HAE=∠F=45°,∠AHE=∠FHE,再根据EF∥HG,得出∠AHF=∠AHG﹣∠FHG,即可得出∠AHE=22.5°,此时,当B与G重合时,a的值最小,求出最小值;第二种情况:根据已知得出∠AEH+∠FEH=45°,由折叠的性质求出∠AHE的度数,此时,当B与E重合时,a的值最小,设DH=DA=x,则AH=CH=x,在Rt△AHG中,∠AHG=90°,根据勾股定理得:AG=AH=2x,再根据∠AEH=∠FEH,∠GHE=∠FEH,求出∠AEH=∠GHE,得出AB=AE=2x+x,从而求出a的最小值;‎ ‎(2)先过点H作HQ⊥AB于Q,则∠AQH=∠GOH=90°,根据矩形的性质得出∠D=∠DAQ=∠AQH=90°,得出四边形DAQH为矩形,设AD=x,GB=y,则HQ=x,EG=2y,‎ 由折叠的性质可知∠AEH=∠FEH=60°,得出∠FEG=60°,在Rt△EFG中,根据特殊角的三角函数值求出EG和EQ的值,再由折叠的性质得出AE=EF,求出y的值,从而求出AB=2AQ+GB,即可得出a的值.‎ 解答:‎ 解:(1)①∵四边形ABCD是矩形,‎ ‎∴∠ADH=90°,‎ ‎∵DH=DA,‎ ‎∴∠DAH=∠DHA=45°,‎ ‎∴∠HAE=45°,‎ ‎∵HA=HG,‎ ‎∴∠HAE=∠HGA=45°;‎ 故答案为:45°;‎ ‎②分两种情况讨论:‎ 第一种情况:‎ ‎∵∠HAG=∠HGA=45°;‎ ‎∴∠AHG=90°,‎ 由折叠可知:∠HAE=∠F=45°,∠AHE=∠FHE,‎ ‎∵EF∥HG,‎ ‎∴∠FHG=∠F=45°,‎ ‎∴∠AHF=∠AHG﹣∠FHG=45°,‎ 即∠AHE+∠FHE=45°,‎ ‎∴∠AHE=22.5°,‎ 此时,当B与G重合时,a的值最小,最小值是2;‎ 第二种情况:‎ ‎∵EF∥HG,‎ ‎∴∠HGA=∠FEA=45°,‎ 即∠AEH+∠FEH=45°,‎ 由折叠可知:∠AEH=∠FEH,‎ ‎∴∠AEH=∠FEH=22.5°,‎ ‎∵EF∥HG,‎ ‎∴∠GHE=∠FEH=22.5°,‎ ‎∴∠AHE=90°+22.5°=112.5°,‎ 此时,当B与E重合时,a的值最小,‎ 设DH=DA=x,则AH=CH=x,‎ 在Rt△AHG中,∠AHG=90°,由勾股定理得:‎ AG=AH=2x,‎ ‎∵∠AEH=∠FEH,∠GHE=∠FEH,[来源:学,科,网Z,X,X,K]‎ ‎∴∠AEH=∠GHE,‎ ‎∴GH=GE=x,‎ ‎∴AB=AE=2x+x,‎ ‎∴a的最小值是=2+;‎ ‎(2)如图:过点H作HQ⊥AB于Q,则∠AQH=∠GOH=90°,‎ 在矩形ABCD中,∠D=∠DAQ=90°,‎ ‎∴∠D=∠DAQ=∠AQH=90°,‎ ‎∴四边形DAQH为矩形,‎ ‎∴AD=HQ,‎ 设AD=x,GB=y,则HQ=x,EG=2y,‎ 由折叠可知:∠AEH=∠FEH=60°,‎ ‎∴∠FEG=60°,‎ 在Rt△EFG中,EG=EF×cos60°,EF=4y,‎ 在Rt△HQE中,EQ==x,‎ ‎∴QG=QE+EG=x+2y,‎ ‎∵HA=HG,HQ⊥AB,‎ ‎∴AQ=GQ=x+2y,‎ ‎∴AE=AQ+QE=x+2y,‎ 由折叠可知:AE=EF,‎ ‎∴x+2y=4y,‎ ‎∴y=x,‎ ‎∴AB=2AQ+GB=2(x+2y)+y=x,‎ ‎∴a==.‎ 点评:‎ 此题考查了四边形的综合,用到的知识点是矩形的性质、折叠的性质、勾股定理、特殊角的三角函数值等知识点,关键是根据题意做出辅助线,构造直角三角形.‎ ‎ ‎ ‎24.(12分)(2014•宜昌)如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t,0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c.‎ ‎(1)填空:△AOB≌△ DNA或△DPA ≌△BMC(不需证明);用含t的代数式表示A点纵坐标:A(0, 4﹣t );‎ ‎(2)求点C的坐标,并用含a,t的代数式表示b;‎ ‎(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;‎ ‎(4)当抛物线开口向上,对称轴是直线x=2﹣,顶点随着的增大向上移动时,求t的取值范围.‎ 考点:‎ 二次函数综合题.菁优网版权所有 分析:‎ ‎(1)根据全等三角形的判定定理SAS证得:△AOB≌△DNA或DPA≌△BMC;根据图中相关线段间的和差关系来求点A的坐标;‎ ‎(2)利用(1)中的全等三角形的对应边相等易推知:OM=OB+BM=t+4﹣t=4,则C(4,t).把点O、C的坐标分别代入抛物线y=ax2+bx+c可以求得b=t﹣4a;‎ ‎(3)利用待定系数法求得直线OD的解析式y=x.联立方程组,得,所以ax2+(﹣﹣4a)x=0,解得 x=0或x=4+.‎ 对于抛物线的开口方向进行分类讨论,即a>0和a<0两种情况下的a的取值范围;‎ ‎(4)根据抛物线的解析式y=ax2+(﹣4a)x得到顶点坐标是(﹣,﹣(t﹣16a)2).结合已知条件求得a=t2,故顶点坐标为(2﹣,﹣(t﹣)2).哟抛物线的性质知:只与顶点坐标有关,故t的取值范围为:0<t≤.‎ 解答:‎ 解:(1)如图,∵∠DNA=∠AOB=90°,‎ ‎∴∠NAD=∠OBA(同角的余角相等).‎ 在△AOB与△DNA中,,‎ ‎∴△AOB≌△DNA(SAS).‎ 同理△DNA≌△BMC.‎ ‎∵点P(0,4),AP=t,‎ ‎∴OA=OP﹣AP=4﹣t.‎ 故答案是:DNA或△DPA;4﹣t;‎ ‎(2)由题意知,NA=OB=t,则OA=4﹣t.‎ ‎∵△AOB≌△BMC,‎ ‎∴CM=OB=t,‎ ‎∴OM=OB+BM=t+4﹣t=4,‎ ‎∴C(4,t).‎ 又抛物线y=ax2+bx+c过点O、C,‎ ‎∴,‎ 解得 b=t﹣4a;‎ ‎(3)当t=1时,抛物线为y=ax2+(﹣4a)x,NA=OB=1,OA=3.‎ ‎∵△AOB≌△DNA,‎ ‎∴DN=OA=3,‎ ‎∵D(3,4),‎ ‎∴直线OD为:y=x.‎ 联立方程组,得,‎ 消去y,得 ax2+(﹣﹣4a)x=0,‎ 解得 x=0或x=4+,‎ 所以,抛物线与直线OD总有两个交点.‎ 讨论:①当a>0时,4+>3,只有交点O,所以a>0符合题意;‎ ‎②当a<0时,若4+>3,则a<﹣.‎ 又a<0‎ 所以 a<﹣.‎ 若4+<0,则得a>﹣.‎ 又a<0,‎ 所以﹣<a<0.‎ 综上所述,a的取值范围是a>0或a<﹣或﹣<a<0.‎ ‎(4)抛物线为y=ax2+(﹣4a)x,则顶点坐标是(﹣,﹣(t﹣16a)2).‎ 又∵对称轴是直线x=﹣+2=2﹣,‎ ‎∴a=t2,‎ ‎∴顶点坐标为:(2﹣,﹣(1﹣4t)2),即(2﹣,﹣(t﹣)2).‎ ‎∵抛物线开口向上,且随着t的增大,抛物线的顶点向上移动,‎ ‎∴只与顶点坐标有关,‎ ‎∴t的取值范围为:0<t≤.‎ 点评:‎ 本题考查了二次函数综合题型.此题难度较大,需要熟练掌握待定系数法求二次函数解析式,全等三角形的判定与性质,二次函数图象的性质等知识点,综合性比较强,需要学生对所学知识进行系统的掌握.‎ ‎ ‎