- 308.19 KB
- 2021-11-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2019年山东省德州市中考数学试卷
一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。每小题选对得4分,选错、不选或选出的答案超过一个均记零分.
1.(4分)-12的倒数是( )
A.﹣2 B.12 C.2 D.1
2.(4分)下列图形中,是中心对称图形但不是轴对称图形的是( )
A. B.
C. D.
3.(4分)据国家统计局统计,我国2018年国民生产总值(GDP)为900300亿元.用科学记数法表示900300亿是( )
A.9.003×1012 B.90.03×1012
C.0.9003×1014 D.9.003×1013
4.(4分)下列运算正确的是( )
A.(﹣2a)2=﹣4a2 B.(a+b)2=a2+b2
C.(a5)2=a7 D.(﹣a+2)(﹣a﹣2)=a2﹣4
5.(4分)若函数y=kx与y=ax2+bx+c的图象如图所示,则函数y=kx+b的大致图象为( )
A. B.
C. D.
6.(4分)不等式组5x+2>3(x-1)12x-1≤7-32x的所有非负整数解的和是( )
A.10 B.7 C.6 D.0
7.(4分)下列命题是真命题的是( )
A.两边及其中一边的对角分别相等的两个三角形全等
B.平分弦的直径垂直于弦
C.一组对边平行且一组对角相等的四边形是平行四边形
D.两条直线被第三条直线所截,内错角相等
8.(4分)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x尺,木长y尺,则可列二元一次方程组为( )
A.y-x=4.5y-12x=1 B.x-y=4.5y-12x=1
C.x-y=4.512x-y=1 D.y-x=4.512x-y=1
9.(4分)如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是( )
A.130° B.140° C.150° D.160°
10.(4分)甲、乙是两个不透明的纸箱,甲中有三张标有数字14,12,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a,从乙中任取一张卡片,将其数字记为b.若a,b能使关于x的一元二次方程ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为( )
A.23 B.59 C.49 D.13
11.(4分)在下列函数图象上任取不同两点P1(x1,y1)、P2(x2,y2),一定能使y2-y1x2-x1<0成立的是( )
A.y=3x﹣1(x<0) B.y=﹣x2+2x﹣1(x>0)
C.y=-3x(x>0) D.y=x2﹣4x+1(x<0)
12.(4分)如图,正方形ABCD,点F在边AB上,且AF:FB=1:2,CE⊥DF,垂足为M,且交AD于点E,AC与DF交于点N,延长CB至G,使BG=12BC,连接GM.有如下结论:①DE=AF;②AN=24AB;③∠ADF=∠GMF;④S△ANF:S四边形CNFB=1:8.上述结论中,所有正确结论的序号是( )
A.①② B.①③ C.①②③ D.②③④
二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.
13.(4分)|x﹣3|=3﹣x,则x的取值范围是 .
14.(4分)方程6(x+1)(x-1)-3x-1=1的解为 .
15.(4分)如图,一架长为6米的梯子AB斜靠在一竖直的墙AO上,这时测得∠ABO=70°,如果梯子的底端B外移到D,则梯子顶端A下移到C,这时又测得∠CDO=50°,那么AC的长度约为 米.(sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)
16.(4分)已知:[x]表示不超过x的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x}=x﹣[x],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}= .
17.(4分)如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,AB=BF,CE=1,AB=6,则弦AF的长度为 .
18.(4分)如图,点A1、A3、A5…在反比例函数y=kx(x>0)的图象上,点A2、A4、A6……在反比例函数y=-kx(x>0)的图象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,则An(n为正整数)的纵坐标为 .(用含n的式子表示)
三、解答题:本大题共7小题,共78分.解答要写出必要的文字说明、证明过程或演算步骤.
19.(8分)先化简,再求值:(2m-1n)÷(m2+n2mn-5nm)•(m2n+2nm+2),其中m+1+(n﹣3)2=0.
20.(10分)《中学生体质健康标准》规定的等级标准为:90分及以上为优秀,80~89分为良好,60~79分为及格,59分及以下为不及格.某校为了解七、八年级学生的体质健康情况,现从两年级中各随机抽取10名同学进行体质健康检测,并对成绩进行分析.成绩如下:
七年级
80
74
83
63
90
91
74
61
82
62
八年级
74
61
83
91
60
85
46
84
74
82
(1)根据上述数据,补充完成下列表格.
整理数据:
优秀
良好
及格
不及格
七年级
2
3
5
0
八年级
1
4
1
分析数据:
年级
平均数
众数
中位数
七年级
76
74
77
八年级
74
(2)该校目前七年级有200人,八年级有300人,试估计两个年级体质健康等级达到优秀的学生共有多少人?
(3)结合上述数据信息,你认为哪个年级学生的体质健康情况更好,并说明理由.
21.(10分)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.
(1)求进馆人次的月平均增长率;
(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.
22.(12分)如图,∠BPD=120°,点A、C分别在射线PB、PD上,∠PAC=30°,AC=23.
(1)用尺规在图中作一段劣弧,使得它在A、C两点分别与射线PB和PD相切.要求:写出作法,并保留作图痕迹;
(2)根据(1)的作法,结合已有条件,请写出已知和求证,并证明;
(3)求所得的劣弧与线段PA、PC围成的封闭图形的面积.
23.(12分)下表中给出A,B,C三种手机通话的收费方式.
收费方式
月通话费/元
包时通话时间/h
超时费/(元/min)
A
30
25
0.1
B
50
50
0.1
C
100
不限时
(1)设月通话时间为x小时,则方案A,B,C的收费金额y1,y2,y3都是x的函数,请分别求出这三个函数解析式.
(2)填空:
若选择方式A最省钱,则月通话时间x的取值范围为 ;
若选择方式B最省钱,则月通话时间x的取值范围为 ;
若选择方式C最省钱,则月通话时间x的取值范围为 ;
(3)小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.
24.(12分)(1)如图1,菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,请直接写出HD:GC:EB的结果(不必写计算过程)
(2)将图1中的菱形AEGH绕点A旋转一定角度,如图2,求HD:GC:EB;
(3)把图2中的菱形都换成矩形,如图3,且AD:AB=AH:AE=1:2,此时HD:GC:EB的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程);若无变化,请说明理由.
25.(14分)如图,抛物线y=mx2-52mx﹣4与x轴交于A(x1,0),B(x2,0)两点,与y轴交于点C,且x2﹣x1=112.
(1)求抛物线的解析式;
(2)若P(x1,y1),Q(x2,y2)是抛物线上的两点,当a≤x1≤a+2,x2≥92时,均有y1≤y2,求a的取值范围;
(3)抛物线上一点D(1,﹣5),直线BD与y轴交于点E,动点M在线段BD上,当∠BDC=∠MCE时,求点M的坐标.
2019年山东省德州市中考数学试卷
参考答案与试题解析
一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。每小题选对得4分,选错、不选或选出的答案超过一个均记零分.
1.(4分)-12的倒数是( )
A.﹣2 B.12 C.2 D.1
【解答】解:-12的到数是﹣2,
故选:A.
2.(4分)下列图形中,是中心对称图形但不是轴对称图形的是( )
A. B.
C. D.
【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误,
B、是中心对称图形但不是轴对称图形,故本选项正确,
C、不是轴对称图形,也不是中心对称图形,故本选项错误,
D、是轴对称图形,也是中心对称图形,故本选项错误.
故选:B.
3.(4分)据国家统计局统计,我国2018年国民生产总值(GDP)为900300亿元.用科学记数法表示900300亿是( )
A.9.003×1012 B.90.03×1012
C.0.9003×1014 D.9.003×1013
【解答】解:将900300亿元用科学记数法表示为:9.003×1013.
故选:D.
4.(4分)下列运算正确的是( )
A.(﹣2a)2=﹣4a2 B.(a+b)2=a2+b2
C.(a5)2=a7 D.(﹣a+2)(﹣a﹣2)=a2﹣4
【解答】解:(﹣2a)2=4a2,故选项A不合题意;
(a+b)2=a2+2ab+b2,故选项B不合题意;
(a5)2=a10,故选项C不合题意;
(﹣a+2)(﹣a﹣2)=a2﹣4,故选项D符合题意.
故选:D.
5.(4分)若函数y=kx与y=ax2+bx+c的图象如图所示,则函数y=kx+b的大致图象为( )
A. B.
C. D.
【解答】解:根据反比例函数的图象位于二、四象限知k<0,
根据二次函数的图象确知a>0,b<0,
∴函数y=kx+b的大致图象经过二、三、四象限,
故选:C.
6.(4分)不等式组5x+2>3(x-1)12x-1≤7-32x的所有非负整数解的和是( )
A.10 B.7 C.6 D.0
【解答】解:5x+2>3(x-1)①12x-1≤7-32x②,
解不等式①得:x>﹣2.5,
解不等式②得:x≤4,
∴不等式组的解集为:﹣2.5<x≤4,
∴不等式组的所有非负整数解是:0,1,2,3,4,
∴不等式组的所有非负整数解的和是0+1+2+3+4=10,
故选:A.
7.(4分)下列命题是真命题的是( )
A.两边及其中一边的对角分别相等的两个三角形全等
B.平分弦的直径垂直于弦
C.一组对边平行且一组对角相等的四边形是平行四边形
D.两条直线被第三条直线所截,内错角相等
【解答】解:A、由两边及其中一边的对角分别相等无法证明两个三角形全等,故A错误,是假命题;
B、平分弦(非直径)的直径垂直于弦,故B错误,是假命题;
C、一组对边平行且一组对角相等的四边形是平行四边形,故C正确,是真命题;
D、两条平行线被第三条直线所截,内错角相等,故D错误,是假命题;
故选:C.
8.(4分)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x尺,木长y尺,则可列二元一次方程组为( )
A.y-x=4.5y-12x=1 B.x-y=4.5y-12x=1
C.x-y=4.512x-y=1 D.y-x=4.512x-y=1
【解答】解:设绳长x尺,长木为y尺,
依题意得x-y=4.5y-12x=1,
故选:B.
9.(4分)如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是( )
A.130° B.140° C.150° D.160°
【解答】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,
∴四边形ABCD为圆O的内接四边形,
∴∠ABC+∠ADC=180°,
∵∠ABC=40°,
∴∠ADC=140°,
故选:B.
10.(4分)甲、乙是两个不透明的纸箱,甲中有三张标有数字14,12,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a,从乙中任取一张卡片,将其数字记为b.若a,b能使关于x的一元二次方程ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为( )
A.23 B.59 C.49 D.13
【解答】解:(1)画树状图如下:
由图可知,共有9种等可能的结果,其中能使乙获胜的有4种结果数,
∴乙获胜的概率为49,
故选:C.
11.(4分)在下列函数图象上任取不同两点P1(x1,y1)、P2(x2,y2),一定能使y2-y1x2-x1<0成立的是( )
A.y=3x﹣1(x<0) B.y=﹣x2+2x﹣1(x>0)
C.y=-3x(x>0) D.y=x2﹣4x+1(x<0)
【解答】解:A、∵k=3>0
∴y随x的增大而增大,即当x1>x2时,必有y1>y2
∴当x<0时,y2-y1x2-x1>0,
故A选项不符合;
B、∵对称轴为直线x=1,
∴当0<x<1时y随x的增大而增大,当x>1时y随x的增大而减小,
∴当0<x<1时:当x1>x2时,必有y1>y2
此时y2-y1x2-x1>0,
故B选项不符合;
C、当x>0时,y随x的增大而增大,
即当x1>x2时,必有y1>y2
此时y2-y1x2-x1>0,
故C选项不符合;
D、∵对称轴为直线x=2,
∴当x<0时y随x的增大而减小,
即当x1>x2时,必有y1<y2
此时y2-y1x2-x1<0,
故D选项符合;
故选:D.
12.(4分)如图,正方形ABCD,点F在边AB上,且AF:FB=1:2,CE⊥DF,垂足为M,且交AD于点E,AC与DF交于点N,延长CB至G,使BG=12BC,连接GM
.有如下结论:①DE=AF;②AN=24AB;③∠ADF=∠GMF;④S△ANF:S四边形CNFB=1:8.上述结论中,所有正确结论的序号是( )
A.①② B.①③ C.①②③ D.②③④
【解答】解:∵四边形ABCD是正方形,
∴AD=AB=CD=BC,∠CDE=∠DAF=90°,
∵CE⊥DF,
∴∠DCE+∠CDF=∠ADF+∠CDF=90°,
∴∠ADF=∠DCE,
在△ADF与△DCE中,
∠DAF=∠CDE=90°AD=CD∠ADF=∠DCE,
∴△ADF≌△DCE(ASA),
∴DE=AF;故①正确;
∵AB∥CD,
∴AFCD=ANCN,
∵AF:FB=1:2,
∴AF:AB=AF:CD=1:3,
∴ANCN=13,
∴ANAC=14,
∵AC=2AB,
∴AN2AB=14,
∴AN=24AB;故②正确;
作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=10a,
由△CMD∽△CDE,可得CM=91010a,
由△GHC∽△CDE,可得CH=91020a,
∴CH=MH=12CM,
∵GH⊥CM,
∴GM=GC,
∴∠GMH=∠GCH,
∵∠FMG+∠GMH=90°,∠DCE+∠GCM=90°,
∴∠FEG=∠DCE,
∵∠ADF=∠DCE,
∴∠ADF=∠GMF;故③正确,
设△ANF的面积为m,
∵AF∥CD,
∴AFCD=FNDN=13,△AFN∽△CDN,
∴△ADN的面积为3m,△DCN的面积为9m,
∴△ADC的面积=△ABC的面积=12m,
∴S△ANF:S四边形CNFB=1:11,故④错误,
故选:C.
二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.
13.(4分)|x﹣3|=3﹣x,则x的取值范围是 x≤3 .
【解答】解:3﹣x≥0,
∴x≤3;
故答案为x≤3;
14.(4分)方程6(x+1)(x-1)-3x-1=1的解为 x=﹣4 .
【解答】解:6(x+1)(x-1)-3x-1=1,
6(x+1)(x-1)-3(x+1)(x-1)(x+1)=1,
3-3x(x+1)(x-1)=1,
-3x+1=1,
x+1=﹣3,
x=﹣4,
经检验x=﹣4是原方程的根;
故答案为x=﹣4;
15.(4分)如图,一架长为6米的梯子AB斜靠在一竖直的墙AO上,这时测得∠ABO
=70°,如果梯子的底端B外移到D,则梯子顶端A下移到C,这时又测得∠CDO=50°,那么AC的长度约为 1.02 米.(sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)
【解答】解:由题意可得:
∵∠ABO=70°,AB=6m,
∴sin70°=AOAB=AO6≈0.94,
解得:AO=5.64(m),
∵∠CDO=50°,DC=6m,
∴sin50°=CO6≈0.77,
解得:CO=4.62(m),
则AC=5.64﹣4.62=1.02(m),
答:AC的长度约为1.02米.
故答案为:1.02.
16.(4分)已知:[x]表示不超过x的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x}=x﹣[x],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}= 1.1 .
【解答】解;根据题意可得原式=(3.9﹣3)+[(﹣1.8)﹣(﹣2)]﹣(1﹣1)=0.9+0.2=1.1;
故答案为:1.1
17.(4分)如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,AB=BF,CE=1,AB=6,则弦
AF的长度为 485 .
【解答】解:连接OA、OB,OB交AF于G,如图,
∵AB⊥CD,
∴AE=BE=12AB=3,
设⊙O的半径为r,则OE=r﹣1,OA=r,
在Rt△OAE中,32+(r﹣1)2=r2,解得r=5,
∵AB=BF,
∴OB⊥AF,AG=FG,
在Rt△OAG中,AG2+OG2=52,①
在Rt△ABG中,AG2+(5﹣OG)2=62,②
解由①②组成的方程组得到AG=245,
∴AF=2AG=485.
故答案为485.
18.(4分)如图,点A1、A3、A5…在反比例函数y=kx(x>0)的图象上,点A2、A4、A
6……在反比例函数y=-kx(x>0)的图象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,则An(n为正整数)的纵坐标为 (﹣1)n+13(n-n-1) .(用含n的式子表示)
【解答】解:过A1作A1D1⊥x轴于D1,
∵OA1=2,∠OA1A2=∠α=60°,
∴△OA1E是等边三角形,
∴A1(1,3),
∴k=3,
∴y=3x和y=-3x,
过A2作A2D2⊥x轴于D2,
∵∠A2EF=∠A1A2A3=60°,
∴△A2EF是等边三角形,
设A2(x,-3x),则A2D2=3x,
Rt△EA2D2中,∠EA2D2=30°,
∴ED2=1x,
∵OD2=2+1x=x,
解得:x1=1-2(舍),x2=1+2,
∴EF=2x=22+1=2(2-1)(2+1)(2-1)=2(2-1)=22-2,
A2D2=3x=32+1=3(2-1),
即A2的纵坐标为-3(2-1);
过A3作A3D3⊥x轴于D3,
同理得:△A3FG是等边三角形,
设A3(x,3x),则A3D3=3x,
Rt△FA3D3中,∠FA3D3=30°,
∴FD3=1x,
∵OD3=2+22-2+1x=x,
解得:x1=2-3(舍),x2=2+3;
∴GF=2x=23+2=2(3-2)=23-22,
A3D3=3x=33+2=3(3-2),
即A3的纵坐标为3(3-2);
…
∴An(n为正整数)的纵坐标为:(﹣1)n+13(n-n-1);
故答案为:(﹣1)n+13(n-n-1);
三、解答题:本大题共7小题,共78分.解答要写出必要的文字说明、证明过程或演算步骤.
19.(8分)先化简,再求值:(2m-1n)÷(m2+n2mn-5nm)•(m2n+2nm+2),其中m+1+(n﹣3)2=0.
【解答】解:(2m-1n)÷(m2+n2mn-5nm)•(m2n+2nm+2)
=2n-mmn÷m2+n2-5n2mn•m2+4n2+4mn2mn
=2n-mmn•mn(m+2n)(m-2n)•(m+2n)22mn
=-m+2n2mn.
∵m+1+(n﹣3)2=0.
∴m+1=0,n﹣3=0,
∴m=﹣1,n=3.
∴-m+2n2mn=--1+2×32×(-1)×3=56.
∴原式的值为56.
20.(10分)《中学生体质健康标准》规定的等级标准为:90分及以上为优秀,80~89分为良好,60~79分为及格,59分及以下为不及格.某校为了解七、八年级学生的体质健康情况,现从两年级中各随机抽取10名同学进行体质健康检测,并对成绩进行分析.成绩如下:
七年级
80
74
83
63
90
91
74
61
82
62
八年级
74
61
83
91
60
85
46
84
74
82
(1)根据上述数据,补充完成下列表格.
整理数据:
优秀
良好
及格
不及格
七年级
2
3
5
0
八年级
1
4
74
1
分析数据:
年级
平均数
众数
中位数
七年级
76
74
77
八年级
78
74
(2)该校目前七年级有200人,八年级有300人,试估计两个年级体质健康等级达到优秀的学生共有多少人?
(3)结合上述数据信息,你认为哪个年级学生的体质健康情况更好,并说明理由.
【解答】解:(1)八年级及格的人数是4,平均数=74+61+83+91+60+85+46+84+74+8210=74,中位数=74+822=78;
故答案为:4;74;78;
(2)计两个年级体质健康等级达到优秀的学生共有200×210+300×110=40+30=70人;
(3)根据以上数据可得:七年级学生的体质健康情况更好.
21.(10分)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.
(1)求进馆人次的月平均增长率;
(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.
【解答】解:(1)设进馆人次的月平均增长率为x,则由题意得:
128+128(1+x)+128(1+x)2=608
化简得:4x2+12x﹣7=0
∴(2x﹣1)(2x+7)=0,
∴x=0.5=50%或x=﹣3.5(舍)
答:进馆人次的月平均增长率为50%.
(2)∵进馆人次的月平均增长率为50%,
∴第四个月的进馆人次为:128(1+50%)3=128×278=432<500
答:校图书馆能接纳第四个月的进馆人次.
22.(12分)如图,∠BPD=120°,点A、C分别在射线PB、PD上,∠PAC=30°,AC=23.
(1)用尺规在图中作一段劣弧,使得它在A、C两点分别与射线PB和PD相切.要求:写出作法,并保留作图痕迹;
(2)根据(1)的作法,结合已有条件,请写出已知和求证,并证明;
(3)求所得的劣弧与线段PA、PC围成的封闭图形的面积.
【解答】解:(1)如图,
(2)已知:如图,∠BPD=120°,点A、C分别在射线PB、PD上,∠PAC=30°,AC=23,过A、C分别作PB、PD的垂线,它们相交于O,以OA为半径作⊙O,OA⊥PB,
求证:PB、PC为⊙O的切线;
证明:∵∠BPD=120°,PAC=30°,
∴∠PCA=30°,
∴PA=PC,
连接OP,
∵OA⊥PA,PC⊥OC,
∴∠PAO=∠PCO=90°,
∵OP=OP,
∴Rt△PAO≌Rt△PCO(HL)
∴OA=OC,
∴PB、PC为⊙O的切线;
(3)∵∠OAP=∠OCP=90°﹣30°=60°,
∴△OAC为等边三角形,
∴OA=AC=23,∠AOC=60°,
∵OP平分∠APC,
∴∠APO=60°,
∴AP=33×23=2,∴劣弧AC与线段PA、PC围成的封闭图形的面积=S四边形APCO﹣S扇形AOC=2×12×23×2-60⋅π⋅(23)2360=43-2π.
23.(12分)下表中给出A,B,C三种手机通话的收费方式.
收费方式
月通话费/元
包时通话时间/h
超时费/(元/min)
A
30
25
0.1
B
50
50
0.1
C
100
不限时
(1)设月通话时间为x小时,则方案A,B,C的收费金额y1,y2,y3都是x的函数,请分别求出这三个函数解析式.
(2)填空:
若选择方式A最省钱,则月通话时间x的取值范围为 0≤x≤853 ;
若选择方式B最省钱,则月通话时间x的取值范围为 853≤x≤1753 ;
若选择方式C最省钱,则月通话时间x的取值范围为 x>1753 ;
(3)小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.
【解答】解:(1)∵0.1元/min=6元/h,
∴由题意可得,
y1=30(0≤x≤25)6x-120(x>25),
y2=50(0≤x≤50)6x-250(x>50),
y3=100(x≥0);
(2)作出函数图象如图:
结合图象可得:
若选择方式A最省钱,则月通话时间x的取值范围为:0≤x<853,
若选择方式B最省钱,则月通话时间x的取值范围为:853<x<1753,
若选择方式C最省钱,则月通话时间x的取值范围为:x>1753.
故答案为:0≤x<853,853<x<1753,x>1753.
(3)∵小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,
∴结合图象可得:小张选择的是方式A,小王选择的是方式B,
将y=80分别代入y2=50(0≤x≤50)6x-250(x>50),可得
6x﹣250=80,
解得:x=55,
∴小王该月的通话时间为55小时.
24.(12分)(1)如图1,菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,请直接写出HD:GC:EB的结果(不必写计算过程)
(2)将图1中的菱形AEGH绕点A旋转一定角度,如图2,求HD:GC:EB;
(3)把图2中的菱形都换成矩形,如图3,且AD:AB=AH:AE=1:2,此时HD:GC:EB的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程);若无变化,请说明理由.
【解答】解:(1)连接AG,
∵菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,
∴∠GAE=∠CAB=30°,AE=AH,AB=AD,
∴A,G,C共线,AB﹣AE=AD﹣AH,
∴HD=EB,
延长HG交BC于点M,延长EG交DC于点N,连接MN,交GC于点O,则GMCN
也为菱形,
∴GC⊥MN,∠NGO=∠AGE=30°,
∴OGGN=cos30°=32,
∵GC=2OG,
∴GNGC=13,
∵HGND为平行四边形,
∴HD=GN,
∴HD:GC:EB=1:3:1.
(2)如图2,连接AG,AC,
∵△ADC和△AHG都是等腰三角形,
∴AD:AC=AH:AG=1:3,∠DAC=∠HAG=30°,
∴∠DAH=∠CAG,
∴△DAH∽△CAG,
∴HD:GC=AD:AC=1:3,
∵∠DAB=∠HAE=60°,
∴∠DAH=∠BAE,
在△DAH和△BAE中,
AD=AB∠DAH=∠BAEAH=AE
∴△DAH≌△BAE(SAS)
∴HD=EB,
∴HD:GC:EB=1:3:1.
(3)有变化.
如图3,连接AG,AC,
∵AD:AB=AH:AE=1:2,∠ADC=∠AHG=90°,
∴△ADC∽△AHG,
∴AD:AC=AH:AG=1:5,
∵∠DAC=∠HAG,
∴∠DAH=∠CAG,
∴△DAH∽△CAG,
∴HD:GC=AD:AC=1:5,
∵∠DAB=∠HAE=90°,
∴∠DAH=∠BAE,
∵DA:AB=HA:AE=1:2,
∴△ADH∽△ABE,
∴DH:BE=AD:AB=1:2,
∴HD:GC:EB=1:5:2
25.(14分)如图,抛物线y=mx2-52mx﹣4与x轴交于A(x1,0),B(x2,0)两点,与y轴交于点C,且x2﹣x1=112.
(1)求抛物线的解析式;
(2)若P(x1,y1),Q(x2,y2)是抛物线上的两点,当a≤x1≤a+2,x2≥92时,均有y1≤y2,求a的取值范围;
(3)抛物线上一点D(1,﹣5),直线BD与y轴交于点E,动点M在线段BD上,当∠BDC=∠MCE时,求点M的坐标.
【解答】解:(1)函数的对称轴为:x=-b2a=54=x1+x22,而且x2﹣x1=112,
将上述两式联立并解得:x1=-32,x2=4,
则函数的表达式为:y=m(x+32)(x﹣4)=m(x2﹣4x+32x﹣6),
即:﹣6m=﹣4,解得:m=23,
故抛物线的表达式为:y=23x2-53x﹣4;
(2)由(1)知,函数的对称轴为:x=54,
则x=92和x=﹣2关于对称轴对称,故其函数值相等,
又a≤x1≤a+2,x2≥92时,均有y1≤y2,
结合函数图象可得:a≥-2a+2≤92,解得:﹣2≤a≤52;
(3)如图,连接BC、CM,过点D作DG⊥OE于点G,
而点B、C、D的坐标分别为:(4,0)、(0,﹣4)、(1,﹣5),
则OB=OC=4,CG=GC=1,BC=42,CD=2,
故△BOC、△CDG均为等腰直角三角形,
∴∠BCD=180°﹣∠OCB﹣∠GCD=90°,
在Rt△BCD中,tan∠BDC=BCCD=422=4,
∠BDC=∠MCE,
则tan∠MCE=4,
将点B、D坐标代入一次函数表达式:y=mx+n并解得:
直线BD的表达式为:y=53x-203,故点E(0,-203),
设点M(n,53n-203),过点M作MF⊥CE于点F,
则MF=n,CF=OF﹣OC=83-5n3,
tan∠MCE=MFCF=n83-5n3=4,
解得:n=3223,
故点M(3223,-10023).
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2019/6/30 9:31:14;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521
相关文档
- 2018年广东省深圳市中考数学试卷含2021-11-1217页
- 2018年江苏省苏州市中考数学试卷含2021-11-1213页
- 2018年湖南省衡阳市中考数学试卷含2021-11-1225页
- 2019年浙江省金华市中考数学试卷含2021-11-1230页
- 2019年湖南省怀化市中考数学试卷含2021-11-1218页
- 2018年甘肃省白银市中考数学试卷含2021-11-1226页
- 山东省聊城市中考数学试卷含答案解2021-11-1230页
- 2019年湖北省武汉市中考数学试卷含2021-11-1230页
- 2018年北京市中考数学试卷含答案2021-11-1117页
- 2018年河北省中考数学试卷含答案2021-11-1115页